渐近显著性(双侧)和精确显著性(双侧)都是在统计学中用于判断检验结果是否显著的统计量。
相同点:
- 都是用于判断检验结果是否显著的方法。
- 都是以α作为显著性水平,即在α水平下,得出的检验结果显著。
不同点:
- 渐近显著性使用了统计学中的渐近正态分布理论,适用于样本容量大的情况;而精确显著性则直接根据精确的分布计算得出,适用于样本容量小的情况。
- 渐近显著性的P值是双侧的,即检验结果不显著的范围被分布在检验统计量的两个尾端;而精确显著性可以根据双侧显著性的P值计算得出,它的P值是双侧显著性的两倍。
总结
总的来说,渐近显著性和精确显著性适用于不同的情境,需要根据具体的研究问题和数据特点选择合适的方法。在大样本容量下,可以使用渐近显著性以取得更高效的计算;而在小样本的情况下,应该使用精确显著性来避免精确度的丢失。