sklearn流程

#encoding=gbk
"""
传统的机器学习任务从开始到建模的一般流程是:
获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类。
"""
#===============1.获取数据 ========================
# ==============1.1 sklearn中的数据集,必须导入datasets模块==========
from sklearn import datasets
#小数据集
iris = datasets.load_iris()
#获得其特征向量
x = iris.data
#获得样本label
y = iris.target

#==========1.2构造的各种参数可以根据自己需要调整========================
X,y=datasets.make_regression(n_samples=100,n_features=1,n_targets=1,noise=1)

#=========================2.数据预处理===========================
# 为了使得训练数据的标准化规则与测试数据的标准化规则同步
from sklearn import preprocessing

#==============2.1数据归一化==============
train_data = [[0, 0], [0, 0], [1, 1], [1, 1]]
test_data = [[0, 0], [0, 0], [1, 1], [1, 1]]
# 1. 基于mean和std的标准化
scaler = preprocessing.StandardScaler().fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data)
# 2. 将每个特征值归一化到一个固定范围
scaler = preprocessing.MinMaxScaler(feature_range=(0, 1)).fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data)
#feature_range: 定义归一化范围,注用()括起来


# ==================2.2正则化(normalize)==================
# 想要计算两个样本的相似度时必不可少的一个操作,就是正则化。
# 其思想是:首先求出样本的p-范数,然后该样本的所有元素都要除以该范数,
# 这样最终使得每个样本的范数都为1。
X = [[ 1., -1.,  2.],
     [ 2.,  0.,  0.],
     [ 0.,  1., -1.]]
X_normalized = preprocessing.normalize(X, norm='l2')

#========================2.3 one-hot编码======================

#one-hot编码是一种对离散特征值的编码方式,
#在LR模型中常用到,用于给线性模型增加非线性能力。
data = [[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]
encoder = preprocessing.OneHotEncoder().fit(data)
encoder.transform(data).toarray()

#==========================3.数据集拆分====================
#在得到训练数据集时,通常我们经常会把训练数据集进一步
#拆分成训练集和验证集,这样有助于我们模型参数的选取。

# 作用:将数据集划分为 训练集和测试集
# 格式:train_test_split(*arrays, **options)
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
"""
参数
---
arrays:样本数组,包含特征向量和标签

test_size:
  float-获得多大比重的测试样本 (默认:0.25)
  int - 获得多少个测试样本

train_size: 同test_size

random_state:
  int - 随机种子(种子固定,实验可复现)
  
shuffle - 是否在分割之前对数据进行洗牌(默认True)

返回
---
分割后的列表,长度=2*len(arrays), 
  (train-test split)
"""

#===================4. 定义模型=======================
#在这一步我们首先要分析自己数据的类型,搞清出你要用什么模型来做,
# 然后我们就可以在sklearn中定义模型了。
# sklearn为所有模型提供了非常相似的接口,
# 这样使得我们可以更加快速的熟悉所有模型的用法。
# 在这之前我们先来看看模型的常用属性和功能:

# # 拟合模型
# model.fit(X_train, y_train)
# # 模型预测
# model.predict(X_test)
#
# # 获得这个模型的参数
# model.get_params()
# # 为模型进行打分
# model.score(data_X, data_y) # 线性回归:R square; 分类问题: acc

#============4.1 线性回归================
from sklearn.linear_model import LinearRegression
# 定义线性回归模型
model = LinearRegression(fit_intercept=True, normalize=False,
    copy_X=True, n_jobs=1)
"""
参数
---
    fit_intercept:是否计算截距。False-模型没有截距
    normalize: 当fit_intercept设置为False时,该参数将被忽略。 如果为真,则回归前的回归系数X将通过减去平均值并除以l2-范数而归一化。
     n_jobs:指定线程数
"""

#===================4.2 逻辑回归LR=======================
from sklearn.linear_model import LogisticRegression
# 定义逻辑回归模型
model = LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0,
    fit_intercept=True, intercept_scaling=1, class_weight=None,
    random_state=None, solver='liblinear', max_iter=100, multi_class='ovr',
    verbose=0, warm_start=False, n_jobs=1)

"""参数
---
    penalty:使用指定正则化项(默认:l2)
    dual: n_samples > n_features取False(默认)
    C:正则化强度的反,值越小正则化强度越大
    n_jobs: 指定线程数
    random_state:随机数生成器
    fit_intercept: 是否需要常量
"""

#==================4.3朴素贝叶斯算法NB=======================
from sklearn import naive_bayes
model = naive_bayes.GaussianNB() # 高斯贝叶斯
model = naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)
model = naive_bayes.BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None)
"""
文本分类问题常用MultinomialNB
参数
---
    alpha:平滑参数
    fit_prior:是否要学习类的先验概率;false-使用统一的先验概率
    class_prior: 是否指定类的先验概率;若指定则不能根据参数调整
    binarize: 二值化的阈值,若为None,则假设输入由二进制向量组成
"""

#====================4.4 决策树DT==========================
from sklearn import tree
model = tree.DecisionTreeClassifier(criterion='gini', max_depth=None,
    min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
    max_features=None, random_state=None, max_leaf_nodes=None,
    min_impurity_decrease=0.0, min_impurity_split=None,
     class_weight=None, presort=False)
"""参数
---
    criterion :特征选择准则gini/entropy
    max_depth:树的最大深度,None-尽量下分
    min_samples_split:分裂内部节点,所需要的最小样本树
    min_samples_leaf:叶子节点所需要的最小样本数
    max_features: 寻找最优分割点时的最大特征数
    max_leaf_nodes:优先增长到最大叶子节点数
    min_impurity_decrease:如果这种分离导致杂质的减少大于或等于这个值,则节点将被拆分。
"""

#=================4.5 支持向量机SVM===================
from sklearn.svm import SVC
model = SVC(C=1.0, kernel='rbf', gamma='auto')
"""参数
---
    C:误差项的惩罚参数C
    gamma: 核相关系数。浮点数,If gamma is ‘auto’ then 1/n_features will be used instead.
"""
# ======================4.6 k近邻算法KNN====================
from sklearn import neighbors

# 定义kNN分类模型
model = neighbors.KNeighborsClassifier(n_neighbors=5, n_jobs=1)  # 分类
model = neighbors.KNeighborsRegressor(n_neighbors=5, n_jobs=1)  # 回归
"""参数
---
    n_neighbors: 使用邻居的数目
    n_jobs:并行任务数
"""
# =======================4.7多层感知机(神经网络)================
from sklearn.neural_network import MLPClassifier

# 定义多层感知机分类算法
model = MLPClassifier(activation='relu', solver='adam', alpha=0.0001)
"""参数
---
    hidden_layer_sizes: 元祖
    activation:激活函数
    solver :优化算法{‘lbfgs’, ‘sgd’, ‘adam’}
    alpha:L2惩罚(正则化项)参数。
"""
# =========================5.模型评估与选择篇==================
# =========================5.1交叉验证============
from sklearn.model_selection import cross_val_score

cross_val_score(model, X, y=None, scoring=None, cv=None, n_jobs=1)
"""参数
---
    model:拟合数据的模型
    cv : k-fold
    scoring: 打分参数-‘accuracy’、‘f1’、‘precision’、‘recall’ 、‘roc_auc’、'neg_log_loss'等等
"""
# =========================5.2检验曲线===================
# 使用检验曲线,我们可以更加方便的改变模型参数,获取模型表现。
from sklearn.model_selection import validation_curve
train_score, test_score = validation_curve(model, X, y, param_name=None, param_range=None, cv=None, scoring=None, n_jobs=1)
"""参数
---
    model:用于fit和predict的对象
    X, y: 训练集的特征和标签
    param_name:将被改变的参数的名字
    param_range: 参数的改变范围
    cv:k-fold

返回值
---
   train_score: 训练集得分(array)
    test_score: 验证集得分(array)
"""

# ====================6.保存模型=============
#   最后,我们可以将我们训练好的model保存到本地,或者放到线上供用户使用,那么如何保存训练好的model呢?主要有下面两种方式:

# ===================6.1保存为pickle文件=================
import pickle
# 保存模型
with open('model.pickle', 'wb') as f:
    pickle.dump(model, f)

# 读取模型
with open('model.pickle', 'rb') as f:
    model = pickle.load(f)
model.predict(X_test)
# ===================6.2 sklearn自带方法joblib==============
from sklearn.externals import joblib
# 保存模型
joblib.dump(model, 'model.pickle')
# 载入模型
model = joblib.load('model.pickle')

参考链接: https://blog.csdn.net/weixin_30425949/article/details/95176193
其他详细链接1:https://blog.csdn.net/XiaoYi_Eric/article/details/79952325
其他详细链接2: https://blog.csdn.net/fuqiuai/article/details/79495865
其他详细链接3:https://blog.csdn.net/erinapple/article/details/80299524

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Hyperopt-sklearn是基于scikit-learn项目的一个子集,其全称是:Hyper-parameter optimization for scikit-learn,即针对scikit-learn项目的超级参数优化工具。由于scikit-learn是基于Python的机器学习开源框架,因此Hyperopt-sklearn也基于Python语言。Hyperopt-sklearn的文档称:对于开发者而言,针对不同的训练数据挑选一个合适的分类器(classifier)通常是困难的。而且即使选好了分类器,后面的参数调试过程也相当乏味和耗时。更严重的是,还有许多情况是开发者好不容易调试好了选定的分类器,却发现一开始的选择本身就是错误的,这本身就浪费了大量的精力和时间。针对该问题,Hyperopt-sklearn提供了一种解决方案。Hyperopt-sklearn支持各种不同的搜索算法(包括随机搜索、Tree of Parzen Estimators、Annealing等),可以搜索所有支持的分类器(KNeightborsClassifier、KNeightborsClassifier、SGDClassifier等)或者在给定的分类器下搜索所有可能的参数配置,并评估最优选择。并且Hyperopt-sklearn还支持多种预处理流程,包括TfidfVectorizer,Normalzier和OneHotEncoder等。那么Hyperopt-sklearn的实际效果究竟如何?下表分别展示了使用scikit-learn默认参数和Hyperopt-sklearn优化参数运行的分类器的F-score分数,数据源来自20个不同的新闻组稿件。可以看到,经过优化的分类器的平均得分都要高于默认参数的情况。另外,Hyperopt-sklearn的编码量也很小,并且维护团队还提供了丰富的参考样例。 标签:Hyperopt
scikit-learn(sklearn)是一个常用的Python机器学习库,它提供了丰富的算法和工具来进行数据预处理、特征工程、模型选择和评估等任务。下面是sklearn建模的基本流程: 1. 数据预处理:将原始数据转化为可用于建模的数据格式,包括数据清洗、数据变换、特征提取等。 2. 数据划分:将数据集划分为训练集和测试集,其中训练集用于训练模型,测试集用于评估模型的性能。 3. 特征选择:确定哪些特征能够更好地用于建模,可以根据特征的相关性、重要性等指标来进行选择。 4. 模型选择:选择合适的模型来对数据进行建模,可以根据数据类型、问题类型、模型复杂度等因素来进行选择。 5. 模型训练:使用训练集对模型进行训练,不断调整模型参数以使模型的预测能力更好。 6. 模型评估:使用测试集对模型进行评估,可以使用各种评估指标来评估模型的性能,比如准确率、召回率、F1值等。 7. 模型优化:对模型进行优化,可以使用特征工程、模型调参等方法来提高模型的预测能力。 8. 模型应用:使用训练好的模型对新数据进行预测,可以使用训练好的模型对新数据进行分类、回归、聚类等任务。 以上就是sklearn建模的基本流程,不同的问题和数据类型可能会有不同的建模流程,但是这个流程可以作为一个基础框架来进行建模。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YouShouldKnowMe

别来这套

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值