机器学习提纲挈领-(3)决策树的sklearn使用,理论及推导,python实现,实践

一、介绍

决策树(decision tree) 是一种基本的分类与回归方法。其目的是创建一种模型从数据特征中学习简单的决策规则来预测一个目标变量的值。
决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是if-then 规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。其主要优点是模型具有可读性,分类速度快。学习时,利用训练数据,根据损失函数最小化的原则建立决策树模型。预测时,对新的数据,利用决策树模型进行分类。
在这里插入图片描述

二、DT简单实践

1、分类

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.datasets import load_iris
from sklearn import tree

# import some data to play with
iris = load_iris()
# we only take the first two features. We could avoid this ugly
# slicing by using a two-dim dataset
X = iris.data[:, :2]
y = iris.target

h = .02  # step size in the mesh

# Create color maps
cmap_light = ListedColormap(['orange', 'cyan', 'cornflowerblue'])
cmap_bold = ListedColormap(['darkorange', 'c', 'darkblue'])

clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, y)

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                     np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold,
            edgecolor='k', s=20)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title("GaussianNB 3-Class classification")

plt.savefig("DT_clf.jpg", dpi=100)

在这里插入图片描述
将决策规则保存在pdf中,查看。

import graphviz 
dot_data = tree.export_graphviz(clf, out_file=None, 
                     feature_names=iris.feature_names[:2],  
                     class_names=iris.target_names,  
                     filled=True, rounded=True,  )  
graph = graphviz.Source(dot_data)  
graph.render("DT_clf") 

在这里插入图片描述

2、回归

输入X是单个实数值,并且输出Y是X的正弦和余弦。

当输出值之间没有关联时,一个很简单的处理该类型的方法是建立一个n独立模型。对于决策树,这一策略可以很容易地用于多输出问题。 这需要以下更改:

  • 在叶中存储n个输出值,而不是一个;
  • 通过计算所有n个输出的平均减少量来作为分裂标准.
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor

# Create a random dataset
rng = np.random.RandomState(1)
X = np.sort(200 * rng.rand(100, 1) - 100, axis=0)
y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T
y[::5, :] += (0.5 - rng.rand(20, 2))

# Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=2)
regr_2 = DecisionTreeRegressor(max_depth=5)
regr_3 = DecisionTreeRegressor(max_depth=8)
regr_1.fit(X, y)
regr_2.fit(X, y)
regr_3.fit(X, y)

# Predict
X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis]
y_1 = regr_1.predict(X_test)
y_2 = regr_2.predict(X_test)
y_3 = regr_3.predict(X_test)

# Plot the results
plt.figure()
s = 25
plt.scatter(y[:, 0], y[:, 1], c="navy", s=s,
            edgecolor="black", label="data")
plt.scatter(y_1[:, 0], y_1[:, 1], c="cornflowerblue", s=s,
            edgecolor="black", label="max_depth=2")
plt.scatter(y_2[:, 0], y_2[:, 1], c="red", s=s,
            edgecolor="black", label="max_depth=5")
plt.scatter(y_3[:, 0], y_3[:, 1], c="orange", s=s,
            edgecolor="black", label="max_depth=8")
plt.xlim([-6, 6])
plt.ylim([-6, 6])
plt.xlabel("target 1")
plt.ylabel("target 2")
plt.title("Multi-output Decision Tree Regression")
plt.legend(loc="best")
plt.savefig("DT_reg", dpi=100)

在这里插入图片描述

理论

1)公式及概念

(1)信息增益

信息增益到底用来做什么? 对于数据集 D D D 而言,信息增益依赖于特征,不同的特征往往具有不同的信息增益。如果对于特征 A A A的信息增益比其他信息增益大,那么特征 A A A具有更强的分类能力,即更适合用于划分。
在这里插入图片描述

  • ∣ D ∣ |D| D 表示其样本容量,即样本个数。
  • K K K为共有K个类
  • ∣ C k ∣ |C_k| Ck 为属于类 C k C_k Ck的样本个数
  • 特征 A A A n n n个不同的取值,则可以根据特征 A A A的取值将 D D D划分为 n n n个子集 D 1 D_1 D1 D 2 D_2 D2 … , D n D_n Dn ∣ D i ∣ |D_i| Di D i D_i Di 的样本个数
  • D i k D_{ik} Dik 为子集 D i D_i Di中属于类 C k C_k Ck的样本的集合,当然 ∣ D i k ∣ |D_{ik}| Dik D i k D_{ik} Dik 的样本个数
(2)信息增益比

特征 A A A 对训练数据集 D D D 的信息增益比 g R ( D , A ) g_R(D, A) gR(D,A)定义为其信息增益 g ( D , A ) g(D, A) g(D,A)与训练数据集D 关于特征A 的值的熵 H A ( D ) H_A(D) HA(D)之比,即
g R ( D , A ) = g ( D , A ) H A ( D ) g_{R}(D, A)=\frac{g(D, A)}{H_{A}(D)} gR(D,A)=HA(D)g(D,A)
H A ( D ) = − ∑ i = 1 n ∣ D i ∣ ∣ D ∣ log ⁡ 2 ∣ D i ∣ ∣ D ∣ H_{A}(D)=-\sum_{i=1}^{n} \frac{\left|D_{i}\right|}{|D|} \log _{2} \frac{\left|D_{i}\right|}{|D|} HA(D)=i=1nDDilog2DDi

(3)基尼系数

假设有K 个类,样本点属于第k 类的概率为 p k p_k pk, 就是上文中的 ∣ C k ∣ ∣ D ∣ \frac{|C_k|}{|D|} DCk,则概率分布的基尼指数定义为:
Gini ⁡ ( p ) = ∑ k = 1 K p k ( 1 − p k ) = 1 − ∑ k = 1 K p k 2 \operatorname{Gini}(p)=\sum_{k=1}^{K} p_{k}\left(1-p_{k}\right)=1-\sum_{k=1}^{K} p_{k}^{2} Gini(p)=k=1Kpk(1pk)=1k=1Kpk2

2)不同的生成算法

  • ID3 算法:使用信息增益
  • C4.5 的生成算法:使用信息增益比
  • CART(classification and regression tree) 算法:
    CART 算法由以下两步组成:
    (1)决策树生成:基于训练数据集生成决策树,生成的决策树要尽量大:
    (2) 决策树剪枝: 用验证数据集对己生成的树进行剪枝并选择最优子树
    • a、分类树:使用基尼系数
    • b、回归树:用平方误差最小化准则
      • 输入空间划分为M 个单元 R 1 R_1 R1 R 2 R_2 R2 , … , R M R_M RM
        划分方法:
        采用启发式的方法,选择第 j j j个变量 X ( j ) X^{(j)} X(j)和它取的值 s s s,作为切分变量和切分点,并定义两个区域。遍历变量 j j j X ( j ) X^{(j)} X(j),对固定的切分变量 j j j扫描切分点 s s s,使下式达到最小值。
        min ⁡ j , s [ min ⁡ c 1 ∑ x i ∈ R 1 ( j , s ) ( y i − c 1 ) 2 + min ⁡ c 2 ∑ x i ∈ R 2 ( j , s ) ( y i − c 2 ) 2 ] \min _{j, s}\left[\min _{c_{1}} \sum_{x_{i} \in R_{1}(j, s)}\left(y_{i}-c_{1}\right)^{2}+\min _{c_{2}} \sum_{x_{i} \in R_{2}(j, s)}\left(y_{i}-c_{2}\right)^{2}\right] j,sminc1minxiR1(j,s)(yic1)2+c2minxiR2(j,s)(yic2)2
        单元 R m R_m Rm上的 c m c_m cm的最优值 c ^ m \hat{c}_{m} c^m R m R_m Rm上的所有输入实例 X i X_i Xi对应的输出 y i y_i yi的均值 c ^ m = ave ⁡ ( y i ∣ x i ∈ R m ) \hat{c}_{m}=\operatorname{ave}\left(y_{i} | x_{i} \in R_{m}\right) c^m=ave(yixiRm)
      • 预测输出。 f ( x ) = ∑ m = 1 M c ^ m I ( x ∈ R m ) f(x)=\sum_{m=1}^{M} \hat{c}_{m} I\left(x \in R_{m}\right) f(x)=m=1Mc^mI(xRm)

3)关于剪枝

剪枝(pruning)是决策树学习算法对付"过拟合"的主要手段。决策树剪枝的基本策略有"预剪枝" 和"后剪枝"。

  • 预剪枝:在决策树生成时,对于要使用的划分属性比较使用前后泛化性能(如:精度)是否提高,若未提高则禁止使用该划分属性作为决策树节点。
  • 后剪枝:先从训练集生成一棵完整决策树,再自底向上对树中的所有非叶结点进行逐一考察。

一种简单的决策树学习的剪枝算法。决策树的剪枝往往通过极小化决策树整体的损失函数(loss function) 或代价函数(cost function) 来实现。
在这里插入图片描述在这里插入图片描述在这里插入图片描述

  • 经验熵: H t ( T ) = − ∑ k N t k N t log ⁡ N t k N t H_{t}(T)=-\sum_{k} \frac{N_{t k}}{N_{t}} \log \frac{N_{t k}}{N_{t}} Ht(T)=kNtNtklogNtNtk

  • 损失函数: C α ( T ) = ∑ t = 1 ∣ T ∣ N t H t ( T ) + α ∣ T ∣ C_{\alpha}(T)=\sum_{t=1}^{|T|} N_{t} H_{t}(T)+\alpha|T| Cα(T)=t=1TNtHt(T)+αT

T T T 的叶结点个数为 ∣ T ∣ |T| T,t 是树 T T T 的叶结点。该叶节点有 N t N_t Nt个样本点,其中 k k k类的样本点有 N t k N_{tk} Ntk个。

4)例子

在这里插入图片描述
在这里插入图片描述

python实现

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
import math
from math import log
import pprint

# 书上题目5.1
def create_data():
    datasets = [['青年', '否', '否', '一般', '否'],
               ['青年', '否', '否', '好', '否'],
               ['青年', '是', '否', '好', '是'],
               ['青年', '是', '是', '一般', '是'],
               ['青年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '好', '否'],
               ['中年', '是', '是', '好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '好', '是'],
               ['老年', '是', '否', '好', '是'],
               ['老年', '是', '否', '非常好', '是'],
               ['老年', '否', '否', '一般', '否'],
               ]
    labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']
    # 返回数据集和每个维度的名称
    return datasets, labels

datasets, labels = create_data()
train_data = pd.DataFrame(datasets, columns=labels)
#利用ID3算法生成决策树,例5.3
# 定义节点类 二叉树
class Node:
    def __init__(self, root=True, label=None, feature_name=None, feature=None):
        self.root = root
        self.label = label
        self.feature_name = feature_name
        self.feature = feature
        self.tree = {}
        self.result = {'label:': self.label, 'feature': self.feature, 'tree': self.tree}

    def __repr__(self):
        return '{}'.format(self.result)

    def add_node(self, val, node):
        self.tree[val] = node

    def predict(self, features):
        if self.root is True:
            return self.label
        return self.tree[features[self.feature]].predict(features)
    
class DTree:
    def __init__(self, epsilon=0.1):
        self.epsilon = epsilon
        self._tree = {}

    # 熵
    @staticmethod
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p/data_length)*log(p/data_length, 2) for p in label_count.values()])
        return ent

    # 经验条件熵
    def cond_ent(self, datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum([(len(p)/data_length)*self.calc_ent(p) for p in feature_sets.values()])
        return cond_ent

    # 信息增益
    @staticmethod
    def info_gain(ent, cond_ent):
        return ent - cond_ent

    def info_gain_train(self, datasets):
        count = len(datasets[0]) - 1
        ent = self.calc_ent(datasets)
        best_feature = []
        for c in range(count):
            c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
            best_feature.append((c, c_info_gain))
        # 比较大小
        best_ = max(best_feature, key=lambda x: x[-1])
        return best_

    def train(self, train_data):
        """
        input:数据集D(DataFrame格式),特征集A,阈值eta
        output:决策树T
        """
        _, y_train, features = train_data.iloc[:, :-1], train_data.iloc[:, -1], train_data.columns[:-1]
        # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
        if len(y_train.value_counts()) == 1:
            return Node(root=True,
                        label=y_train.iloc[0])

        # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
        if len(features) == 0:
            return Node(root=True, label=y_train.value_counts().sort_values(ascending=False).index[0])

        # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征
        max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
        max_feature_name = features[max_feature]

        # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回T
        if max_info_gain < self.epsilon:
            return Node(root=True, label=y_train.value_counts().sort_values(ascending=False).index[0])

        # 5,构建Ag子集
        node_tree = Node(root=False, feature_name=max_feature_name, feature=max_feature)

        feature_list = train_data[max_feature_name].value_counts().index
        for f in feature_list:
            sub_train_df = train_data.loc[train_data[max_feature_name] == f].drop([max_feature_name], axis=1)

            # 6, 递归生成树
            sub_tree = self.train(sub_train_df)
            node_tree.add_node(f, sub_tree)

        # pprint.pprint(node_tree.tree)
        return node_tree

    def fit(self, train_data):
        self._tree = self.train(train_data)
        return self._tree

    def predict(self, X_test):
        return self._tree.predict(X_test)
datasets, labels = create_data()
data_df = pd.DataFrame(datasets, columns=labels)
dt = DTree()
tree = dt.fit(data_df)
{'label:': None, 'feature': 2, 'tree': {'否': {'label:': None, 'feature': 1, 'tree': {'否': {'label:': '否', 'feature': None, 'tree': {}}, '是': {'label:': '是', 'feature': None, 'tree': {}}}}, '是': {'label:': '是', 'feature': None, 'tree': {}}}}
dt.predict(['老年', '否', '否', '一般'])
'否'

在scikit-learn中

分类:DecisionTreeClassifier
回归:DecisionTreeRegressor

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

书生伯言

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值