力扣热题——最长相邻不相等子序列 |

        

        题目要求从字符串数组 words 中选出一个最长的子序列,使得该子序列中相邻字符串对应的 groups 数组中的值不同。通过贪心算法,可以高效地解决该问题。具体步骤为:初始化一个结果列表,遍历 words 数组,检查当前字符串的 groups 值是否与结果列表中最后一个字符串的 groups 值不同,若不同则将其加入结果列表。该算法的时间复杂度和空间复杂度均为 O(n),其中 n 为 words 数组的长度。通过一次遍历即可得到满足条件的最长子序列。

目录

题目链接:2900. 最长相邻不相等子序列 I - 力扣(LeetCode)

题目描述

解法一:贪心算法

Java写法:

C++写法:

运行时间

时间复杂度和空间复杂度

时间复杂度

空间复杂度

总结

总结


题目链接:2900. 最长相邻不相等子序列 I - 力扣(LeetCode)

注:下述题目描述和示例均来自力扣

题目描述

        给你一个下标从 0 开始的字符串数组 words ,和一个下标从 0 开始的 二进制 数组 groups ,两个数组长度都是 n 。

        你需要从 words 中选出 最长子序列。如果对于序列中的任何两个连续串,二进制数组 groups 中它们的对应元素不同,则 words 的子序列是不同的。

        正式来说,你需要从下标 [0, 1, ..., n - 1] 中选出一个 最长子序列 ,将这个子序列记作长度为 k 的 [i0, i1, ..., ik - 1] ,对于所有满足 0 <= j < k - 1 的 j 都有 groups[ij] != groups[ij + 1] 。

        请你返回一个字符串数组,它是下标子序列 依次 对应 words 数组中的字符串连接形成的字符串数组。如果有多个答案,返回 任意 一个。

注意:words 中的元素是不同的 。

示例 1:

输入:words = ["e","a","b"], groups = [0,0,1]
输出:["e","b"]
解释:一个可行的子序列是 [0,2] ,因为 groups[0] != groups[2] 。
所以一个可行的答案是 [words[0],words[2]] = ["e","b"] 。
另一个可行的子序列是 [1,2] ,因为 groups[1] != groups[2] 。
得到答案为 [words[1],words[2]] = ["a","b"] 。
这也是一个可行的答案。
符合题意的最长子序列的长度为 2 。

示例 2:

输入:words = ["a","b","c","d"], groups = [1,0,1,1]
输出:["a","b","c"]
解释:一个可行的子序列为 [0,1,2] 因为 groups[0] != groups[1] 且 groups[1] != groups[2] 。
所以一个可行的答案是 [words[0],words[1],words[2]] = ["a","b","c"] 。
另一个可行的子序列为 [0,1,3] 因为 groups[0] != groups[1] 且 groups[1] != groups[3] 。
得到答案为 [words[0],words[1],words[3]] = ["a","b","d"] 。
这也是一个可行的答案。
符合题意的最长子序列的长度为 3 。

提示:

  • 1 <= n == words.length == groups.length <= 100
  • 1 <= words[i].length <= 10
  • groups[i] 是 0 或 1
  • words 中的字符串 互不相同 。
  • words[i] 只包含小写英文字母。

解法一:贪心算法

  • 初始化:我们需要一个结果列表来存储最终的答案,以及一个映射(或直接使用索引)来追踪每个单词在原数组中的位置。

  • 遍历:对于每一个单词,检查它是否可以加入到当前的结果列表中:

    • 如果结果列表为空,直接添加。
    • 否则,比较当前单词对应的 groups 值和结果列表中最后一个单词的 groups 值。如果这两个值不同,则将当前单词添加到结果列表中。

       这样确保了我们能够构造出一个满足条件的最长子序列,并且只需要一次遍历整个数组即可完成任务。

Java写法:

class Solution {
    public List<String> getLongestSubsequence(String[] words, int[] groups) {
        // 用于存储word到其索引的映射
        Map<String, Integer> wordToIndex = new HashMap<>();
        for (int i = 0; i < words.length; i++) {
            wordToIndex.put(words[i], i);
        }

        List<String> result = new ArrayList<>();

        for (String word : words) {
            if (result.isEmpty()) {
                result.add(word);
            } else {
                // 当前单词对应的group值
                int currentGroup = groups[wordToIndex.get(word)];
                // 结果列表中最后一个单词对应的group值
                int lastGroup = groups[wordToIndex.get(result.get(result.size() - 1))];

                // 如果当前单词与结果列表中最后一个单词对应不同的group,则添加到结果列表
                if (currentGroup != lastGroup) {
                    result.add(word);
                }
            }
        }

        return result;
    }
}

C++写法:

#include <vector>
#include <string>
#include <unordered_map>

using namespace std;

vector<string> getLongestSubsequence(vector<string>& words, vector<int>& groups) {
    unordered_map<string, int> wordToIndex;
    for (int i = 0; i < words.size(); ++i) {
        wordToIndex[words[i]] = i;
    }

    vector<string> result;
    for (const string& word : words) {
        if (result.empty()) {
            result.push_back(word);
        } else {
            int currentIndex = wordToIndex[word];
            int lastIndex = wordToIndex[result.back()];
            if (groups[currentIndex] != groups[lastIndex]) {
                result.push_back(word);
            }
        }
    }

    return result;
}

// 示例测试函数
#include <iostream>

void test() {
    vector<string> words = {"a","b","c","d"};
    vector<int> groups = {1,0,1,1};
    vector<string> result = getLongestSubsequence(words, groups);

    cout << "Result: ";
    for (const string& str : result) {
        cout << str << " ";
    }
    cout << endl;
}

int main() {
    test();
    return 0;
}

运行时间

时间复杂度和空间复杂度

时间复杂度

  1. 初始化映射(unordered_map):在开始时,我们需要遍历一次 words 数组来填充 wordToIndex 映射。这一步的时间复杂度是 O(n),其中 n 是 words 数组的长度。

  2. 遍历 words 数组构建结果列表:接下来,我们再次遍历整个 words 数组来构建最长子序列。对于数组中的每个单词,我们检查其对应的 groups 值与结果列表中最后一个单词的 groups 值是否不同。这里假设查找操作(包括在 unordered_map 中查找以及访问向量末尾元素的操作)平均为 O(1)。因此,这一步的时间复杂度也是 O(n)。

空间复杂度

  1. 存储 wordToIndex 映射:我们需要一个额外的空间来存储 words 数组中每个单词及其索引位置的映射。由于有 n 个单词,所以这部分的空间复杂度是 O(n)。

  2. 存储结果列表 result:在最坏的情况下,所有单词都可能被添加到结果列表中(例如当 groups 数组交替变化时)。这意味着结果列表的最大长度也可能达到 n,因此这部分的空间复杂度同样是 O(n)。

总结

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

总结

        题目要求从字符串数组 words 中选出一个最长的子序列,使得该子序列中相邻字符串对应的 groups 数组中的值不同。通过贪心算法,可以高效地解决该问题。具体步骤为:初始化一个结果列表,遍历 words 数组,检查当前字符串的 groups 值是否与结果列表中最后一个字符串的 groups 值不同,若不同则将其加入结果列表。该算法的时间复杂度和空间复杂度均为 O(n),其中 n 为 words 数组的长度。通过一次遍历即可得到满足条件的最长子序列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WenJGo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值