【深度强化学习】4. Policy Gradient

【Datawhale打卡】十一的时候自己看过一遍,李宏毅老师讲的很好,对数学小白也很友好,但是由于没有做笔记(敲代码),看完以后脑袋里空落落的。趁着这次打卡活动,重新看一遍,果然好多细节需要重头梳理一遍。

1. 新概念/符号

  • policy(策略): 每一个actor中会有对应的策略,这个策略决定了actor的行为。(给定一个state,policy会决定action)。policy记为 π \pi π
  • Return(回报): 一个回合(Episode)所得到的所有的reward的总和,也称为Total reward。一般地,用 R R R 来表示。
  • Trajectory(轨迹 τ \tau τ ): 一个试验中将environment 输出的 s s s 跟 actor 输出的行为 a a a,把这个 s s s a a a 全部串起来形成的集合,称为Trajectory,即  Trajectory  τ = { s 1 , a 1 , s 2 , a 2 , ⋯   , s t , a t } \text { Trajectory } \tau=\left\{s_{1}, a_{1}, s_{2}, a_{2}, \cdots, s_{t}, a_{t}\right\}  Trajectory τ={ s1,a1,s2,a2,,st,at}
  • Reward function: 根据在某一个 state 采取的某一个 action 决定说现在这个行为可以得到多少的分数,它是一个 function。也就是给一个 s 1 s_1 s1 a 1 a_1 a1,它告诉你得到 r 1 r_1 r1。给它 s 2 s_2 s2 a 2 a_2 a2,它告诉你得到 r 2 r_2 r2。 把所有的 r r r 都加起来,就得到了 R ( τ ) R(\tau) R(τ) ,代表某一个 trajectory τ \tau τ 的 reward。
  • Expected reward: R ˉ θ = ∑ τ R ( τ ) p θ ( τ ) = E τ ∼ p θ ( τ ) [ R ( τ ) ] \bar{R}_{\theta}=\sum_{\tau} R(\tau) p_{\theta}(\tau)=E_{\tau \sim p_{\theta}(\tau)}[R(\tau)] Rˉθ=τR(τ)pθ(τ)=Eτpθ(τ)[R(τ)]
符号 解释
τ \tau τ 轨迹,游戏从开始到结束的s、a串( { s 1 , a 1 , s 2 , a 2 , ⋯   , s t , a t } \left\{s_{1}, a_{1}, s_{2}, a_{2}, \cdots, s_{t}, a_{t}\right\} { s1,a1,s2,a2,,st,at}
episode 一个游戏回合,从开始到结束
π \pi π Policy 策略的代指符号
θ \theta θ Policy π \pi π中的参数

2. 三个组成部分

示意图

强化学习通常有以下组成部分,actor, environment, reward。具体过程如上图所示,构成了一个完整的轨迹Trajectory:
 Trajectory  τ = { s 1 , a 1 , s 2 , a 2 , ⋯   , s t , a t } \text { Trajectory } \tau=\left\{s_{1}, a_{1}, s_{2}, a_{2}, \cdots, s_{t}, a_{t}\right\}  Trajectory τ={ s1,a1,s2,a2,,st,at}
每一个 trajectory,你可以计算它发生的概率。假设现在 actor 的参数已经被给定了话,就是 θ \theta θ。根据 θ \theta θ,你其实可以计算某一个 trajectory 发生的概率,你可以计算某一个回合,某一个 episode 里面, 发生这样子状况的概率。
p θ ( τ ) = p ( s 1 ) p θ ( a 1 ∣ s 1 ) p ( s 2 ∣ s 1 , a 1 ) p θ ( a 2 ∣ s 2 ) p ( s 3 ∣ s 2 , a 2 ) ⋯ = p ( s 1 ) ∏ t = 1 T p θ ( a t ∣ s t ) p ( s t + 1 ∣ s t , a t ) \begin{aligned} p_{\theta}(\tau) &=p\left(s_{1}\right) p_{\theta}\left(a_{1} | s_{1}\right) p\left(s_{2} | s_{1}, a_{1}\right) p_{\theta}\left(a_{2} | s_{2}\right) p\left(s_{3} | s_{2}, a_{2}\right) \cdots \\ &=p\left(s_{1}\right) \prod_{t=1}^{T} p_{\theta}\left(a_{t} | s_{t}\right) p\left(s_{t+1} | s_{t}, a_{t}\right) \end{aligned} pθ(τ)=p(s1)pθ(a1s1)p(s2s1,a1)pθ(a2s2)p(s3s2,a2)=p(s1)t=1Tpθ(atst)p(st

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

*pprp*

如果有帮助可以打赏一杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值