强化学习入门(一):什么是Policy Gradient

一、强化学习基础认知

1、强化学习三要素

1、actor (即policy gradient要学习的对象, 是我们可以控制的部分)
2、环境 environment (给定的,无法控制)
3、回报函数 reward function (无法控制)

2、名词介绍

Policy of actor π \omicron(决策):
如下图(本文图片均来自于李宏毅的强化学习课件,其视频内容可点击此处查看)所示,Policy 可以理解为一个包含参数 θ的神经网络,该网络将观察到的变量作为模型的输入,基于概率输出对应的行动action。
在这里插入图片描述

Episode:
游戏从开始到结束的一个完整的回合。

Trajectory τ \tau

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值