Fast AI人工智能审图平台-建筑图纸设计效率的倍增器

本文探讨了建筑行业中AI审图的需求和挑战,指出现有审图软件的局限性,提出基于深度学习的图像检测和分类算法来提高审图效率和准确性。文章详细介绍了技术方案,包括图纸信息结构化、实施方式和结构化数据分析,以及实施效果,展示了AI审图平台在提升设计效率和自动建模潜力方面的贡献。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、AI审图的需求背景

建筑信息模型BIM,在建筑设计领域正成为一个关键、甚至强制的过程,用以确保规划、设计和建设协作的高效,BIM允许多个利益相关者和 AEC(建筑设计、工程、建筑施工)专业人员在一个模型中协作规划、设计和施工建筑物。

目前建筑设计行业大都使用CAD软件绘制施工图(如图1所示),人工绘制的住宅CAD图纸需要通过审图程序或软件来判断是否存在违背国家标准的地方,目前大部分都依靠经验丰富的工程师来进行审核,但工作量大、效率低,因此通过软件AI图像识别的方式替代人工进行自动化审图迫在眉睫。由于住宅CAD图纸来自于各个设计院,没有一个标准和统一,不同的设计院以及设计人员会根据自己的喜好习惯绘制出不同格式的CAD图。而现有的专业审图软件,由于它只能直接从图元识别,不是基于图层,因此只能审查采用专用绘图工具绘制的CAD图。

在这里插入图片描述

图1 住宅建筑的CAD图纸

另外,原来的审图软件准确率低,如果CAD的画图不规范就难以识别,删除的内容:的使用范围受到限制,审图效率低,浪费大量人力和时间。AI审图产品的愿景和目标,就是形成一套集“自动导入设计图”、“自动区域划分、构件识别、强条审查”、“自动导出结果”于一体的全自动智能审图流程。针对构件体数据结构化,运用滴普AI算法团队研发的深度学习方案。

二、建筑审图的难点

在采用软件审图的实践过程中,我们发现建筑行业各设计院住宅设计图纸的构件画法不统一,单位结构体不规范࿰

好的,下面我来描述一下这个软件的设计方法。整个软件可以分为以下几个模块: 1. 文件转换模块:该模块负责将CAD室内施工图纸转换成PDF格式,以便后续处理。可以使用现有的文件转换库或者自行开发文件转换算法。 2. 数据预处理模块:该模块负责对PDF格式的施工图纸进行预处理,包括像分割、边缘检测、像增强等操作,以提高后续处理的准确性。 3. 神经网络模块:该模块是整个软件的核心,负责训练和推理神经网络,以实现对施工图纸核功能。该模块中包含了各种神经网络算法和模型,以及训练和推理的相关代码。 4. 核结果模块:该模块负责保存核结果和建议,以便后续查看和处理。可以将核结果保存在数据库中,或者以其他方式进行存储和管理。 5. 用户界面模块:该模块负责与用户交互,接收用户上传的PDF格式的施工图纸,展示核结果和建议,以及提供用户操作的接口。 在实现过程中,可以采用以下的具体设计方法: 1. 首先,使用文件转换模块将CAD室内施工图纸转换成PDF格式。 2. 然后,使用数据预处理模块对PDF格式的施工图纸进行预处理,以提高后续处理的准确性。 3. 接下来,使用神经网络模块训练和推理神经网络,以实现对施工图纸核功能。在训练阶段,可以使用已有的数据集进行训练,也可以通过人工标注的方式生成新的数据集。在推理阶段,将待核的施工图纸输入到已经训练好的神经网络中,通过神经网络输出的结果,判断该施工图纸是否符合规范和标准,如果不符合,则需要返回核结果和建议。 4. 核结果模块可以采用数据库存储的方式,将核结果和建议保存在数据库中。另外,为了方便用户查看和处理,可以提供查询和导出功能。 5. 最后,用户界面模块可以采用Web或者桌面应用程序的形式,提供上传、查看核结果和导出核报告等功能。 以上就是使用AI系统对CAD室内施工图纸进行核的软件设计方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值