从面试题浅谈布隆过滤器(Bloom Filter)

本文从面试题出发,探讨了如何利用布隆过滤器解决在有限空间内判断100亿个黑名单URL的问题。布隆过滤器是一种概率型数据结构,允许一定程度的误判但不允许漏判。通过计算所需位数组大小和哈希函数数量,实现了在不超过30G额外空间内达到万分之一误判率的目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

面试题

不安全网页的黑名单包含 100亿个黑名单网页, 每个网页的URL最多占64字节,现在想要实现一种网页过滤系统,可以根据网页的URL判断该网页是否在黑名单上, 请设计该系统。 要求该系统允许有万分之一一下的判断失误率,并且使用的额外控件不要超过30G。

分析:一般思路基本就是 将黑名单存入  哈希表 或者 数据库。但是显然与题设是不符合的。假设最差的情况, 每个URL占64个字节。

                                        64字节(byte) * 100 亿  =  6400 亿 (byte)  ≈ 640G  空间

很明显,容量远远超过了我们的要求。So, 当我们碰到下列的几种情况的时候:

  • 网页黑名单系统
  • 垃圾邮件过滤系统
  • 爬虫的网址判断重复系统
  • 容忍一定程度的失误率
  • 对空间比较严格

面试官希望得到的答案往往是: 布隆过滤器。

### 布隆过滤器的工作原理 布隆过滤器是一种空间效率极高的概率型数据结构,用于测试一个元素是否属于某个集合[^1]。这种数据结构的特点是在查询时可能会有误报(即认为某元素存在于集合中但实际上不存在),但绝不会漏报。 #### 工作机制 当向布隆过滤器插入新元素时: - 对于每一个要加入到布隆过滤器中的元素,会通过多个独立的哈希函数计算该元素对应的位数组位置。 - 将这些位置上的比特位设置为1。 对于查询操作而言: - 当检查某一元素是否存在时,同样利用相同的哈希函数集计算出对应的位置。 - 如果所有这些位置都已经被置为1,则返回可能存在;反之则肯定不存在。 由于存在一定的冲突可能性——不同元素可能映射至相同的位置上被标记成1,因此会出现假阳性的情况,也就是所谓的“误报”。 ```cpp #include <iostream> #include <vector> #include <functional> class BloomFilter { private: std::vector<bool> bits; size_t numHashes; public: BloomFilter(size_t n, size_t k): bits(n), numHashes(k) {} void add(const std::string& item){ for (size_t i = 0; i < numHashes; ++i){ auto hashValue = std::hash<std::string>()(item); bits[hashValue % bits.size()] = true; } } bool mightContain(const std::string& item)const{ for (size_t i = 0; i < numHashes; ++i){ if (!bits[std::hash<std::string>()(item) % bits.size()]){ return false; } } return true; } }; ``` 此代码片段展示了如何创建简单的布隆过滤器类并实现了`add()`方法用来添加项目以及`mightContain()`来进行成员检测[^2]。 为了降低误报率,在设计布隆过滤器时需考虑以下几个因素: - **选择合适的哈希函数数量**: 更多高质量随机分布特性的哈希函数可以减少碰撞几率; - **调整位数组大小**: 较大的位数组能够容纳更多条目而不增加过多内存消耗的同时保持较低错误率; - **控制负载因子**: 即已存入项目的平均密度,过高会导致频繁发生冲突从而提升误判比例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值