从面试题浅谈布隆过滤器(Bloom Filter)

本文从面试题出发,探讨了如何利用布隆过滤器解决在有限空间内判断100亿个黑名单URL的问题。布隆过滤器是一种概率型数据结构,允许一定程度的误判但不允许漏判。通过计算所需位数组大小和哈希函数数量,实现了在不超过30G额外空间内达到万分之一误判率的目标。
摘要由CSDN通过智能技术生成

面试题

不安全网页的黑名单包含 100亿个黑名单网页, 每个网页的URL最多占64字节,现在想要实现一种网页过滤系统,可以根据网页的URL判断该网页是否在黑名单上, 请设计该系统。 要求该系统允许有万分之一一下的判断失误率,并且使用的额外控件不要超过30G。

分析:一般思路基本就是 将黑名单存入  哈希表 或者 数据库。但是显然与题设是不符合的。假设最差的情况, 每个URL占64个字节。

                                        64字节(byte) * 100 亿  =  6400 亿 (byte)  ≈ 640G  空间

很明显,容量远远超过了我们的要求。So, 当我们碰到下列的几种情况的时候:

  • 网页黑名单系统
  • 垃圾邮件过滤系统
  • 爬虫的网址判断重复系统
  • 容忍一定程度的失误率
  • 对空间比较严格

面试官希望得到的答案往往是: 布隆过滤器。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值