首先根据极角排序(为什么叫极角?),其实就是选左下角的点,然后根据其他点与这个点所成直线与水平方向的夹角从小到大排序。。。具体的话要用到向量叉积这个东西,据某教说这是高一就学的数学知识,然而我并不知道?具体就是若有向量a(x1,y1),与向量b(x2,y2),如果x1*y2-x2*y1>0那么向量a向左转后与向量b重合,然后根据这个式子维护一个栈来存凸包上的点,如果 栈最后的两个点构成的向量 右转后与 栈尾和新点所构成的向量重合,那么栈尾的这个点就可以滚粗了,大概就是这样,原理的话懒得解释了,找别人的博客去看吧。。。orz
代码:
#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<math.h>
using namespace std;
struct node {
int x;int y;
}p[1005],s[1005];
int n,m;
int sq(int x)
{
return x*x;
}
int chaji(node a1,node a2,node b1,node b2)
{
//叉积大于0,则a左转后到b
return (a2.x-a1.x)*(b2.y-b1.y)-(b2.x-b1.x)*(a2.y-a1.y);
}
double dis(node p1,node p2)
{
return sqrt( (double)sq(p2.y-p1.y)*1.0+(double)sq(p2.x-p1.x)*1.0 );
}
bool cmp1(node p1,node p2)
{
if (p1.x!=p2.x)
return p1.x<p2.x;
return p1.y<p2.y;
}
bool cmp2(node p1,node p2)
{
int tmp=chaji(p[1],p1,p[1],p2);
if (tmp>0) return 1;
if (tmp==0 && dis(p[0],p1)<dis(p[0],p2)) return 1;
return 0;
}
int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
scanf("%d%d",&p[i].x,&p[i].y);
sort(p+1,p+1+n,cmp1);
sort(p+2,p+1+n,cmp2);
s[1]=p[1];
int tot=1;
for (int i=2;i<=n;i++)
{
while(tot>1 && chaji(s[tot-1],s[tot],s[tot],p[i])<=0) tot--;
tot++;
s[tot]=p[i];
}
for (int i=1;i<=tot;i++)
printf("%d %d\n",s[i].x,s[i].y);
return 0;
}
模板题推荐:poj1113 注意精度上的四舍五入(^.^)
poj1113题的代码:
#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<math.h>
using namespace std;
struct node {
int x;int y;
}p[1005],s[1005];
int n,m;
int sq(int x)
{
return x*x;
}
int chaji(node a1,node a2,node b1,node b2)
{
//叉积大于0,则a左转后到b
return (a2.x-a1.x)*(b2.y-b1.y)-(b2.x-b1.x)*(a2.y-a1.y);
}
double dis(node p1,node p2)
{
return sqrt( (double)sq(p2.y-p1.y)*1.0+(double)sq(p2.x-p1.x)*1.0 );
}
bool cmp1(node p1,node p2)
{
if (p1.x!=p2.x)
return p1.x<p2.x;
return p1.y<p2.y;
}
bool cmp2(node p1,node p2)
{
int tmp=chaji(p[1],p1,p[1],p2);
if (tmp>0) return 1;
if (tmp==0 && dis(p[0],p1)<dis(p[0],p2)) return 1;
return 0;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
for (int i=1;i<=n;i++)
scanf("%d%d",&p[i].x,&p[i].y);
sort(p+1,p+1+n,cmp1);
sort(p+2,p+1+n,cmp2);
s[1]=p[1];
int tot=1;
for (int i=2;i<=n;i++)
{
while(tot>1 && chaji(s[tot-1],s[tot],s[tot],p[i])<=0) tot--;
tot++;
s[tot]=p[i];
}
double ans=0.0;
s[tot+1]=s[1];
for (int i=1;i<=tot;i++)
ans+=dis(s[i],s[i+1]);
double tmp=2.0*acos(-1.0)*(double)m;
ans+=tmp;
int zans=(int)(ans+0.5);
printf("%d\n",zans);
}
return 0;
}