🎯 \教程亮点\
- 超详细接入步骤: 涵盖注册、配置、调用全过程。
- 代码实例丰富: 提供 Python 示例,快速上手!
- 高频问题解答: 排雷常见接入难题,助力高效开发。
全网最强开源AI大模型接入教程:开源模型DeepSeek-V3 API接入全流程详解 (与OpenAI完美兼容)
全网最强开源AI大模型接入教程:开源模型DeepSeek-V3 API接入全流程详解 (与OpenAI完美兼容)
正文
🚀 \DeepSeek-V3 是什么?为什么选择它?\
DeepSeek-V3 是最新一代开源 AI 模型, 不仅完全兼容 OpenAI API,还能通过流式输出大幅提升性能和用户体验。
🚀 优势 | 🌟 描述 |
---|---|
高兼容性 | 适配 OpenAI SDK,代码迁移成本极低。 |
低成本高性能 | 提供更优价格,性能全面升级,适合多种应用场景。 |
实时响应支持 | 可启用流式输出功能,实现 ChatGPT 式实时对话。 |
🛠️ \Step-by-Step 接入流程\
\第一步:注册 DeepSeek 平台账号\
- 打开官网: 👉 点击访问官网:https://www.deepseek.com
- 点击右上角的 注册 按钮,填写信息完成账号注册。
- 登录后,进入左侧菜单栏的 API Keys 页面。
全网最强开源 AI 大模型接入教程:开源模型DeepSeek-V3 API全流程详解 🚀(与OpenAI完美兼容)
✨ 提示: API Keys 是你访问 DeepSeek API 的核心凭证,请妥善保存!
\第二步:创建 API Key 🔑\
- 在 API Keys 页面,点击 创建密钥 按钮。
- 系统会生成一个唯一的 API Key,用于后续调用。
将 API Key 保存到安全位置,如项目的环境变量文件中。
\第三步:配置 API 参数\
DeepSeek API 使用与 OpenAI API 兼容的参数格式,主要配置如下:
参数名称 | 参数值 |
---|---|
base_url | https://api.deepseek.com 或 https://api.deepseek.com/v1 |
api_key | 使用刚刚生成的 API Key |
model | deepseek-chat(DeepSeek-V3 默认模型) |
特别说明:
base_url
的/v1
并不与模型版本绑定,而是 API 接口版本的标识。
💻 \Python 示例代码演示\
以下为使用 Python 调用 DeepSeek-V3 的完整示例:
代码语言:javascript
# 安装 OpenAI SDK:pip3 install openai
from openai import OpenAI
# 创建 API 客户端
client = OpenAI(api_key="<你的API Key>", base_url="https://api.deepseek.com")
# 调用 deepseek-chat 模型
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "你好,DeepSeek!"},
],
stream=False # 设置为 True 可启用流式输出
)
# 输出响应内容
print(response.choices[0].message.content)
✨ 注意: 将 stream
参数设置为 true
,即可实现实时响应。
🔥 \DeepSeek-V3 的核心优势\
🚀 \与 OpenAI 兼容\
无需修改代码,直接适配现有项目。
🌟 \支持流式输出\
适用于需要实时响应的对话或生成式任务。
📚 \全面文档支持\
官方提供详细的多语言开发文档,快速上手:👉 查看文档。
常见问题解答(FAQ)❓
\Q1: DeepSeek 与 OpenAI 有哪些区别?\
DeepSeek 提供与 OpenAI 相同的 API 格式,但具备更高灵活性、成本效益和可扩展性,适合团队项目。
\Q2: 如何启用流式输出?\
只需在调用时将 stream
参数设置为 true
,即可实现实时输出功能。
\Q3: 是否支持其他编程语言?\
支持包括 Python、Node.js 和 Curl 在内的多种主流开发语言。
✨ 总结: 通过本教程,你已经掌握了注册、配置与调用 DeepSeek-V3 的完整流程。 快去尝试接入,开启你的 AI 创作之旅 吧!
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓