在人工智能领域,大语言模型(LLM)无疑是当下最炙手可热的话题之一。从改变人们交互方式的 ChatGPT,到各行各业基于大模型开发的创新应用,LLM 正以迅猛之势重塑科技生态与产业格局。在这样的大背景下,想要深入了解大语言模型的理论基础、核心算法以及工程实践方法,就需要一本专业且全面的书籍作为指引,而《大规模语言模型:从理论到实践(第 2 版)》正是这样一本不可多得的佳作。这本书的 ISBN 为 9787121500572, PDF为 超清版,带有书签目录,阅读超方便。
一、迭代升级,紧跟前沿
2023 年 9 月,复旦大学张奇、桂韬、郑锐、黄萱菁研究团队首次发布了《大规模语言模型:从理论到实践》。短短两年间,大语言模型领域在理论研究、预训练方法、后训练技术及解释性等方面均取得了重大突破。作者团队敏锐捕捉到这些变化,对第 1 版进行了大幅修订升级,增加内容超过 40%,为读者呈现了更前沿、实用的知识体系与实践指导。
二、内容架构,全面且深入
本书围绕 LLM 理论基础、预训练、指令理解、大模型增强、大模型应用五大部分展开,逻辑清晰,层层递进。
大语言模型基础:介绍语言模型定义、Transformer 结构、大语言模型框架、混合专家模型(MoE)等内容,并以 LLaMA 使用的模型结构为例给出代码实例。其中,新增的混合专家模型(MoE)相关内容,能让读者了解到模型如何通过多个子模型的协同工作,提升性能与效率。
大语言模型预训练:讲解预训练所需的数据分布、预处理方法,以及模型分布式训练中的数据并行、流水线并行、张量并行及 ZeRO 系列优化方法,并以 DeepSpeed 为例介绍大语言模型预训练过程。在实际操作中,预训练对计算资源要求极高,这些优化方法能够帮助研究者更高效地利用资源,确保模型稳定收敛。
大语言模型指令理解:重点介绍指令微调和强化学习。在指令微调部分,讲解模型微调技术、指令微调数据构造策略及高效微调方法,如 LoRA、Delta Tuning 等;强化学习章节则涵盖基础理论、策略梯度方法(REINFORCE 算法、广义优势估计、PPO 算法等)、推理模型的强化学习(以 DeepSeek - R1 和 Kimi k1.5 为例)以及 RLHF,并结合 DeepSpeed - Chat 和 verl 框架,详细说明如何训练类 ChatGPT 系统。通过这些内容,读者能深入理解大模型如何学习理解并执行人类指令。
提升大语言模型能力:这部分内容涵盖多模态大语言模型、大模型智能体和检索增强生成(RAG)。多模态大语言模型章节介绍基础理论、架构设计与训练策略及实际应用;智能体章节剖析其发展历程、架构设计与实现原理,并以 LangChain 和 Coze 为例阐述实践方法;RAG 章节介绍核心思想、实现方式,包括检索增强框架设计、检索与生成模块协作机制及应用方法。这些都是当前大模型领域的热门研究方向,对拓展模型能力边界至关重要。
大语言模型应用:包含大语言模型效率优化、评估及典型应用的开发与部署。效率优化章节介绍模型压缩、训练与推理效率优化等关键技术;评估章节探讨评估体系构建、方法设计及实施;应用章节介绍典型应用场景及开发流程、工具与本地部署方法。这些内容对于将大模型从实验室研究推向实际应用具有重要指导意义。
三、特色与优势
理论与实践结合:每个阶段的介绍都包含算法、数据、难点及实践经验,让读者不仅知其然,还知其所以然,并且能将理论知识应用到实际项目中。
紧跟技术趋势:深度剖析 MoE、强化学习、多模态、智能体、RAG、效率优化等技术趋势,确保读者掌握最新研究成果。
体系完善:覆盖预训练、微调、强化学习、应用开发、效率优化等全流程,为读者构建完整的知识体系。
新增实用章节:新增多模态大语言模型、智能体、RAG、大模型效率优化等章节,并对指令微调和强化学习部分大幅修改,使内容更贴合当下需求。
助力理论落地:增设工程实践指南与评估体系模块,帮助读者将理论知识转化为实际生产力。
无论是 AI 从业者、研究者,还是高校相关专业的学生,《大规模语言模型:从理论到实践(第 2 版)》都是一本不可多得的案头必备书籍。它能帮助你系统掌握大语言模型知识,在这个充满机遇与挑战的 AI 时代抢占先机。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓