自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(23)
  • 收藏
  • 关注

原创 介词有感2

当你看到一个介词时,不要急着直接找一个中文词去对应,而是先问自己:“这个介词在这里连接了什么?它想表达一种什么样的关系(时间、地点、原因、方式等等)?这种关系在中文里通常是怎么说的?你需要判断介词在这里具体起什么作用,表达什么样的关系。这是一个需要不断练习和思考的过程,但掌握了这种方法,你的翻译会越来越地道和准确。

2025-05-17 14:11:09 338

原创 关于模型训练中的参数保存与argparse库

argparse库用于创建命令行接口,通过ArgumentParser对象定义和解析命令行参数。例如,parser = argparse.ArgumentParser(description='ImgCap2Embedding')创建一个解析器,描述信息会在用户请求帮助时显示。使用parser.add_argument()方法可以添加参数,如--subj、--model_type和--mode,分别定义主题、模型类型和模式等参数。choices参数限制输入值的范围,dest指定参数存储的名称,default

2025-05-15 14:19:06 562

原创 介词的有感

proxies for brain activity这句话,有个定语从句,先划分主语,定语,进一步的在主语/定语中看介词,知道有个什么句式,最后就知道意思了。:通过...(方式)实现...(目标)。大型语言模型(LLMs)的兴起开启了搜索引擎的新范式,这些搜索引擎使用生成模型收集和总结信息,以回答用户查询。,能够生成准确且个性化的回应,迅速取代传统搜索引擎,如 Google 和 Bing。试试关注英语句子里面的介词,分析我们应该怎么翻译它?生成引擎(GEs)的统一框架。

2025-05-15 00:42:01 331

原创 关于cleanRL Q-learning

程序的元信息(与os.path 或 pathlib 模块的使用--路径操作--相关)

2025-05-13 22:50:25 750

原创 Colab使用_文件操作

1.Google Drive 集成:你可以通过挂载 Google Drive,将文件和文件夹保存到云端,实现持久化存储2.多文件支持:你可以在一个 Notebook 中操作多个文件或文件夹,例如:克隆整个 GitHub 存储库(包含多个文件和文件夹)。下载并解压 ZIP 文件(如 Huggy 环境),管理多个文件。3.管理多个文件和文件夹在 Colab 中操作:!!!压缩文件夹并下载:!

2025-05-11 14:21:49 1316

原创 利用深度学习和语音合成的神经语音解码框架——A neural speech decoding frameworkleveraging deep learning and speechsynthes

摘要从神经信号中解码人类语音对于脑机接口(BCI)技术来说至关重要,这项技术旨在为有神经缺陷的人群恢复语音能力。然而,这仍然是一个已知的任务,主要是由于与。这里,我们提出了一个基于深度学习的新型神经语音解码,该框架包括一个将皮层电图(ECoG)信号从大脑皮层翻译成可解释语音参数的ECoG解码器,以及一个将语音参数映射到声谱图的新型可微分语音合成器。语音到语音的自编码器,包括一个语音编码器和相同的语音合成器,以生成相关语音参数,从而促进ECoG解码器的训练。

2025-03-16 21:48:16 1207

原创 强化学习基础-动态规划

强化学习系列(入门)--笔记(三)分享强化学习知识和代码实践

2025-03-12 19:59:59 822

原创 强化学习基础-马尔可夫决策过程与贝尔曼方程

强化学习系列(入门)--笔记(二)分享强化学习知识和代码实践

2025-03-11 21:47:37 1021

原创 老虎机问题-强化学习最基本的问题

强化学习系列(入门)-笔记(一)。分享强化学习知识和代码实践。

2025-03-11 14:06:42 1121

原创 大型数据集数据处理函数

loadImgs 返回一个列表,列表中的每个元素是一个字典,包含图像的元数据(如 id、file_name、coco_url 等)。第8列(BOLD5000):若图像包含在BOLD5000数据集中,则为True(见http://bold5000.github.io)。返回值:io.imread 通常返回一个 NumPy 数组,表示图像的像素值(RGB格式,形状为 (height, width, 3))。第4列(cropBox):裁剪框的四个数字元组(顶部、底部、左侧、右侧),以图像尺寸的分数表示。

2025-03-07 21:22:03 945

原创 大语言模型从理论到实践(第二版)-学习笔记(绪论)

快速了解大语言模型

2025-03-07 13:39:58 1178 2

原创 深度学习(斋藤康毅)学习笔记(六)反向传播3

深度学习入门-基于python的理论与实现,学习笔记系列,包括学习心得和代码实践

2025-03-06 21:13:39 423

原创 大语言模型从理论到实践(第二版)-学习笔记(一)transformer理论与实践

机器翻译的目标是从源语言(Source Language)转换到目标语言(Target Language)。Transformer结构完全通过注意力机制完成对源语言序列和目标语言序列全局依赖的建模。注意力层:使用多头注意力(Multi-Head Attention)机制整合上下文语义。多头注意力并行运行多个独立注意力机制,进而从多维度捕捉输入序列信息。它使得序列中任意两个单词之间的依赖关系可以直接被建模而不基于传统的循环结构,从而更好地解决文本的长程依赖问题。

2025-03-06 18:36:27 2215

原创 深度学习(斋藤)学习笔记(五)-反向传播2

深度学习入门-基于python的理论与实践,学习笔记系列,包括学习心得和代码实践

2025-03-05 14:47:15 672

原创 深度学习(斋藤)学习笔记(四)-反向传播

深度学习入门-基于python的理论与实现,学习笔记系列,包括学习心得和代码实践

2025-03-04 19:46:08 1120

原创 数据处理基本函数学习

python编写大型数据处理函数

2025-03-03 21:44:47 332

原创 多模态机器学习的基础和趋势:原理、挑战和开放问题(上)

开发能够通过多模态经验和数据进行理解、推理和学习的计算机代理,一直是人工智能的宏伟目标,类似于人类通过多种感知模态来感知和与世界互动。随着具身自主代理[37, 222]、自动驾驶汽车[295]、图像和视频理解[11, 243]、图像和视频生成[210, 234]以及多传感器融合等领域的最新进展,我们离能够集成和从多种感知模态中学习的智能代理越来越近。--CMU多模态学习课程配套论文-深入学习多模态

2025-03-01 12:41:50 2260

原创 多模态学习入门之(核心技术-表示分裂-模态级分裂)

模态级分裂详细解读与学习路线

2025-02-28 19:03:38 586

原创 深度学习(斋藤)学习笔记(三)

深度学习入门-基于python的理论与实现,学习笔记系列,包括学习心得与代码实践

2025-02-28 14:35:50 1130

原创 学习PyTorch框架、多模态和自然语言处理(NLP)的网站与项目推荐

多模态+NLP 提高代码经验分享(来自grok)

2025-02-26 21:37:06 1033

原创 深度学习(斋藤)学习笔记(二)

深度学习入门-基于python的理论与实现,学习笔记系列,包括:学习心得与代码实践

2025-02-26 14:34:44 704

原创 梯度与导数的关系与区别

梯度是多变量函数偏导数的向量形式。

2025-02-26 14:00:06 1221

原创 深度学习(斋藤)学习笔记(一)

深度学习入门-基于python的理论与实现,学习笔记系列,包括:学习心得与代码实践

2025-02-23 19:02:16 1499

电子科技大学生医工复试题

内容概要:本文涵盖多个专业课程的核心概念和技术,包括傅里叶变换、图像滤波、实验设计、MRI和CT成像的区别、统计检验以及机器学习算法。傅里叶变换通过将复杂信号分解为不同频率的正弦波和余弦波,揭示信号的频域特性,广泛应用于信号处理领域。图像处理中,锐利滤波和平滑滤波分别用于增强图像边缘和去除噪声。实验设计流程包括文献查阅、假设提出、消融实验验证、结果可视化和结论得出。MRI与CT成像在原理、设备、成像方式和应用场景上存在显著差异,MRI适合软组织成像,而CT擅长快速评估急性病症。机器学习部分介绍了SVM和PCA的工作原理,SVM通过最大化间隔分离数据,PCA则通过降维保留数据的主要特征。此外,还简要提及了监督学习、半监督学习和无监督学习的概念。 适合人群:理工科学生、科研工作者及对相关技术感兴趣的从业者。 使用场景及目标:①理工科学生可以通过本文加深对专业课程的理解;②科研工作者可以借鉴实验设计方法,优化研究流程;③医学影像技术人员可以从MRI和CT的对比中选择合适的成像技术;④数据科学家可以利用机器学习算法进行数据分析和模型构建。 阅读建议:本文内容较为丰富,建议读者根据自身需求重点关注感兴趣的部分,结合实际案例进行理解和应用。

2025-05-08

利用深度学习和语音合成的神经语音解码框架

对应的ppt

2025-03-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除