前馈神经网络
1. 深度学习:
**定义:**深度学习是机器学习的一个研究方向,它基于一种特殊的学习机制。其特点是建立一个多层学习模型,深层级将浅层级的输出作为输入,将数据层层转化,使之越来越抽象。是模拟人脑接受外界刺激时处理信息和学习的方式。
应用领域:
- 语音识别系统
- 搜索模式
- 图像识别
- 自动驾驶
2.从感知机到多层网络
近代最常用的NN模型(神经网络模型)源于 1943年 McCulloch 和 Pitts 提出的 McCulloch-Pitts 神经元模型(简称M-P神经元模型),它针对单个神经元进行了数学建模。具体而言,M-P模型有如下三个功能:
- 能够接受n个输入信号
- 能够为输入信号分配权重
- 能够将得到的信号进行汇总,变换并输出
(图片来自网络)
其中 y 为 激活函数,θ为偏置量,即神经元对输入信号的平移 </