《深度学习》之 前馈神经网络 原理 详解

本文详细介绍了深度学习中的前馈神经网络,包括从单层感知机到多层网络的演变,重点讲解了反向传播算法的流程,并探讨了sigmoid、Tanh、ReLU、Leaky ReLU、Parametric ReLU以及Swish等激活函数的特性和优缺点。
摘要由CSDN通过智能技术生成

前馈神经网络

1. 深度学习:

**定义:**深度学习是机器学习的一个研究方向,它基于一种特殊的学习机制。其特点是建立一个多层学习模型,深层级将浅层级的输出作为输入,将数据层层转化,使之越来越抽象。是模拟人脑接受外界刺激时处理信息和学习的方式。
应用领域
- 语音识别系统
- 搜索模式
- 图像识别
- 自动驾驶

2.从感知机到多层网络

近代最常用的NN模型(神经网络模型)源于 1943年 McCulloch 和 Pitts 提出的 McCulloch-Pitts 神经元模型(简称M-P神经元模型),它针对单个神经元进行了数学建模。具体而言,M-P模型有如下三个功能:

  • 能够接受n个输入信号
  • 能够为输入信号分配权重
  • 能够将得到的信号进行汇总,变换并输出
    在这里插入图片描述
    (图片来自网络)
    其中 y 为 激活函数,θ为偏置量,即神经元对输入信号的平移
  • </
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DFCED

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值