【pycharm使用技巧】机器学习and深度学习一些常用包(package)和模块(moudule)的安装指令(随时更新补充)

conda install package 和 pip install package 这两种方式优先使用哪一种都没关系,但需要考虑 package 调用顺序优先级以及避免重复安装,优先使用哪种就要一直保持,不能这次安装 package A 用 conda install 方式,下次安装 package B 用 pip install,如果经常这样安装 package 在以后调用的时候很可能报错。 

在此我决定养成  优先conda,然后才是pip的安装习惯

conda换源

换清华源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
# 设置搜索时显示通道地址
conda config --set show_channel_urls yes

换回默认源

换回默认源:conda config --remove-key channels

conda虚拟环境相关指令

#查看conda虚拟环境
conda env list

#查看虚拟环境中conda安装的包
conda list

#conda激活环境
conda activate 环境名
#conda退出环境
conda deactivate 

#conda删除虚拟环境
conda env remove -n 要删除的虚拟环境名

#conda创建虚拟环境
conda create -n 环境名 python=3.7

conda安装和pip安装常规指令

#conda安装包
conda install 包名

#conda卸载安装包
conda remove 包名
conda uninstall 包名

#pip安装 
pip install 包名
pip uninstall 包名

#pip清华源安装
pip install 包名 -i https://pypi.tuna.tsinghua.edu.cn/simple

#安装numpy

conda install numpy=1.19.2
卸载 conda uninstall numpy

#安装pandas

 conda install pandas=1.3.4 

或者 pip install pandas

#安装sklearn

conda install scikit-learn

或者 pip install -U scikit-learn

#安装matplotlib

我上次尝试pip报错了,然后用conda安装

首先  conda search matplotlib  查看我的python版本对应的matplotlib

conda  list  发现我的是python36,然后

conda install matplotlib=3.1.1 --channel conda-forge
安装成功

(比较慢,换上清华源还是很慢,但比默认源快,耐性等待,半个小时都是正常的)

pip install matplotlib     (pip安装matplotlib 会出现各种兼容性问题,非常不建议

问题:------------------------------------------------------------------------------------------------------------

1.反正3.7.1版本及以上,都会有问题(对应numpy2.0又会出现新的兼容性问题,numpy2.0不支持tensorflow2.4.0)

2.建议先安装matplotlib ,因为安装matplotlib 后,会把numpy包自动安装好,并把之前你装好的都自动卸载掉

#安装seabor

conda install seaborn

#安装RDKit

RDKit的安装比较复杂,去看RDkit专栏安装方法【RDKit】关于RDKit安装问题,python兼容性问题(最后有RDKit的正确安装方法)-CSDN博客

#安装IPython

conda install ipython

#安装xgboost

输入以下命令,用清华镜像。包从这里下载,速度比较快;否则,默认国外的镜像,下载速度慢,会导致安装失败

pip install xgboost -i https://pypi.tuna.tsinghua.edu.cn/simple

我项目环境对应各种包版本

我的经验关于安装包的顺序

1.matplotlib

2.pandas

3.numpy

tensorflow2.4.0推荐对应一系列包的版本

(一定要先配好numpy对应pandas,这个是基础,因为numpy一卸载,其他包都会被卸载)

conda create -n molshap_tensorflow python=3.7    #实测python3.6和python3.7都可以,看需要

pip install tensorflow==2.4.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
 
###          验证:python 回车
###           >>import tensorflow as tf
###           >>tf.__version__      #(注意这里有四个横杠,建议直接复制,不要自己敲)  
###           2.4.0
###           >>tf.test.is_gpu_available() 
###           True
###返回True,说明tensorflow已经安装完成了,如果返回False,而且显示的是有一个.dll文件找不到的话,那就是你的cuda版本装得不对。




matplotlib=3.5.2
numpy 1.19.2
pandas=1.3.4
scipy 1.4.1
opencv_python 4.2.0.34
tensorflow_gpu 2.4.0
tqdm 4.46.1
Pillow 8.2.0
h5py==2.10.0

pytorch 1.10.0推荐对应一系列包的版本

python 3.7.4

rdkit 2020.09.1

scikit-learn 1.0.2

torch 1.10.0

docopt 0.6.2



matplotlib   3.5.2 
pandas       1.3.4
numpy        1.19.2 

scipy 1.6.2 



第一个项目:皂苷QSAR

###这是我做的第一个正式的AIDD项目

第二个项目:molshap的项目的环境配置

机器学习项目配置  环境名  molshap

python = 3.7

rdkit = 2021.09.2

sklearn = 1.0.1

shap = 0.41.0


matplotlib=3.5.2

pandas=1.3.4

numpy 1.19.2

(一定要先配好numpy对应pandas,这个是基础,因为numpy一卸载,其他包都会被卸载) 

深度学习项目配置   环境名  molshap_tensorflow

conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch
 
#参考我的博文  ---  装pytorch,其实超简单(亲测)







matplotlib=3.5.2
numpy 1.19.2
pandas=1.3.4
scipy 1.4.1
opencv_python 4.2.0.34
tensorflow_gpu 2.4.0
tqdm 4.46.1
Pillow 8.2.0
h5py==2.10.0



rdkit = 2021.09.2

sklearn = 1.0.1

shap = 0.41.0


matplotlib=3.5.2

pandas=1.3.4

numpy 1.19.2

三、

  • Python (3.6.10)
  • chemprop (0.0.2)
  • Numpy (1.18.5)
  • pandas (1.0.4)
  • PyTorch (1.5.0)
  • RDKit (2020.03.2)
  • scikit-learn (0.23.1)
  • tqdm (4.46.1)
  • h5py (2.10.0; for writing/reading an HDF5 file with stored fingerprints)
  • Optuna (1.5.0; for hyperparameter optimization)
  • hickle (3.4.5; for saving/loading dictionaries in the bit and substructure analysis)

四、

streamlit==1.12.0
pandas==1.3.5
scikit-learn==1.0.2
padelpy==0.1.11
stmol==0.0.9
py3Dmol==1.8.1
rdkit-pypi==2022.3.5

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DJ.马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值