基于FPGA(De10-Nano-OpenCL)实现自动驾驶车道检测硬件加速(详细全流程)

  • 本实验仅供参考学习,涉及的所有软件在文中均给出了下载地址,按照本文流程可执行其他类似的硬件加速项目。
  • 若需要执行本实验中所用到的项目文件,请向cucdlh@163.com发送请求,并说明用途。
  • 博主水平有限,若有错误欢迎指正,欢迎交流。

一 实验介绍

        本实验实现了车道检测的功能,并基于FPGA实现硬件加速。具体而言,本实验基于边缘检测和霍夫变换的基本原理,使用De10-Nano开发板,通过OpenCL框架实现检测的运算加速。

        设计的整体框架如下图所示,该OpenCL项目包括OpenCL Kernel(OpenCL内核)和Host Program(主机程序),内核是SoC FPGA的FPGA部分实现的,是在Quartus中开发的,要求Windows/Linux系统中安装有OpenCL SDK;主机程序并不是SoC FPGA的ARM部分,而是在安装了Intel SoC EDS的Windows/Linux系统上交叉编译的。本实验基于Windows 64。

二 原理介绍

边缘检测部分(edgedetect函数)

边缘检测部分使用了经典的Canny边缘检测算法,包括以下几个步骤:

  • 灰度转换:将输入的RGB图像转换为灰度图像。

  • 高斯模糊:对灰度图像进行高斯模糊,以减少噪声。

  • Sobel算子:计算图像的梯度,找出图像中的边缘。

  • 非极大值抑制:通过比较像素点的梯度方向,抑制非极大值点,保留边缘的细节。

  • 双阈值检测:通过设置高低阈值,确定强边缘和弱边缘,并进行边缘连接。

霍夫变换部分(hough 函数)

霍夫变换是一种用于检测图像中几何形状(如直线、圆等)的技术,基本原理为:

  • 在图像空间中,一条直线可以表示为 y = kx + b;

  • 在霍夫空间中,直线可以表示为 rho = x * cos(theta) + y * sin(theta),其中 rho 是直线到原点的距离,theta 是直线的角度;

  • 通过遍历图像中的每个边缘点,计算其在霍夫空间中的 rho 和 theta,并在累加器数组中进行投票。最终,累加器中的峰值对应于图像中的直线。

基于De10-Nano-OpenCL实现硬件加速

  • De10 - Nano 是一款基于 FPGA(现场可编程门阵列)的开发板。

  • OpenCL是一个开放的、跨平台的并行编程框架,允许开发者使用高级编程语言(如 C、C++)来编写可以在异构计算平台(包括 CPU、GPU、FPGA 等)上运行的程序。

  • FPGA 内部的逻辑单元可以同时处理多个数据,,可以同时对矩阵的多个元素进行乘法和加法运算,极大地加快了运算速度。

三 实验过程

提醒:需要提前准备一块De10-Nano的开发板

1 软件安装

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值