苹果叶部病害-目标检测数据集(包括VOC格式、YOLO格式)

苹果叶部病害-目标检测数据集(包括VOC格式、YOLO格式)

数据集:
链接:https://pan.baidu.com/s/1-xaykeLg-BheGKgquvkvOA?pwd=eu4s 
提取码:eu4s 

数据集信息介绍:
共有 3555 张图像和一一对应的标注文件

标注文件格式提供了两种,包括VOC格式的xml文件和YOLO格式的txt文件。

标注的对象共有以下几种:

[‘AlternariaBoltch’, ‘Blackrot’, ‘Brown_Spot’, ‘Grey_spot’, ‘Mosaic’, ‘Rust’, ‘Scab’]

标注框的数量信息如下:(标注时一般是用英文标的,括号里提供标注对象的中文作为参考)

Alternaria_Boltch: 724 (斑点落叶病)

Black_rot: 1834 (黑腐病)

Brown_Spot: 2031(褐斑病)

Grey_spot: 547(灰斑病)

Mosaic: 725(花叶病)

Rust: 1319(锈病)

Scab: 2000(黑星病)

注:一张图里可能标注了多个对象,所以标注框总数可能会大于图片的总数。

完整的数据集,包括3个文件夹和一个txt文件:

为了帮助你进行VOCYOLO格式的转换,可以参考以下步骤和代码示例。首先,请确保你已经安装了Python以及必要的库,如xmltodict用于解析VOC格式的XML文件。接下来,你需要编写一个脚本来读取VOC格式的数据,并生成YOLO格式的文本文件。以下是一个简单的Python脚本示例,用于进行格式转换:(步骤、代码、扩展内容,此处略) 参考资源链接:[苹果病害VOC/YOLO数据集5867张图片13类标注](https://wenku.csdn.net/doc/57gybfig36?spm=1055.2569.3001.10343) 这个转换过程涉及到读取每张图片对应的XML文件,解析出边界框的坐标和类别信息,并按照YOLO格式将这些信息保存到TXT文件中。每行对应一个目标,包含类别和边界框的中心点坐标及宽高。通过运行上述脚本,你可以得到完整的YOLO格式数据集,进而用于训练或评估YOLO模型。 如果你希望深入学习更多关于VOC格式YOLO格式以及如何在计算机视觉机器学习项目中应用这些数据集的知识,可以参考这份资料:《苹果病害VOC/YOLO数据集5867张图片13类标注》。这份资源不仅包括数据集本身,还有详细的标注类别信息,以及如何将这些数据用于智能植保和农业信息化的应用案例,为你的研究或开发工作提供全面支持。 参考资源链接:[苹果病害VOC/YOLO数据集5867张图片13类标注](https://wenku.csdn.net/doc/57gybfig36?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值