柑橘叶部病害-目标检测数据集(包括VOC格式、YOLO格式)

柑橘叶部病害-目标检测数据集(包括VOC格式、YOLO格式)

数据集:
链接: https://pan.baidu.com/s/1eBtpLC5Hy4Rho6Lpz1nijQ?pwd=zuqx 
提取码: zuqx 

数据集信息介绍:
共有 1571张图像和一一对应的标注文件
标注文件格式提供了两种,包括VOC格式的xml文件和YOLO格式的txt文件。

标注的对象共有以下几种:

[‘black_spot’, ‘greening’, ‘canker’, ‘healthy’, ‘Melanose’]

标注框的数量信息如下:(标注时一般是用英文标的,括号里提供标注对象的中文作为参考)

black_spot: 259(黑斑病)

greening: 362(黄龙病,柑橘绿化病)

canker: 592(溃疡病)

healthy: 358(健康的)

Melanose: 5(柑橘黑星病)

注:一张图里可能标注了多个对象,所以标注框总数可能会大于图片的总数

完整的数据集,包括3个文件夹和一个txt文件:
在这里插入图片描述
all_images文件:存储数据集的图片,截图如下:
在这里插入图片描述
图片大小信息:
在这里插入图片描述
all_txt文件夹和classes.txt: 存储yolo格式的txt标注文件,数量和图像一样,每个标注文件一一对应。
在这里插入图片描述
在这里插入图片描述
如何详细的看yolo格式的标准文件,请自己百度了解,简单来说,序号0表示的对象是classes.txt中数组0号位置的名称。

all_xml文件:VOC格式的xml标注文件。数量和图像一样,每个标注文件一一对应。
在这里插入图片描述
标注结果:
在这里插入图片描述
如何详细的看VOC格式的标准文件,请自己百度了解。
两种格式的标注都是可以使用的,选择其中一种即可。
——————————————————————————————————————

写论文参考

基于深度学习的柑橘叶部病害目标检测研究

摘要

柑橘叶部病害严重威胁柑橘的产量和质量。本文利用深度学习技术,针对一个包含五种类别的柑橘叶部病害目标检测数据集进行研究。数据集中包括黑斑病(259张)、黄龙病(362张)、溃疡病(592张)、健康叶片(358张)及黑星病(5张)。通过数据增强、迁移学习及模型优化,我们实现了高效的目标检测,对提高病害诊断的准确性和效率具有重要意义。

关键词

柑橘病害;目标检测;深度学习;卷积神经网络;农业智能化


1. 引言

柑橘是世界范围内广泛种植的经济作物,其产量和品质受到多种病害的威胁。传统的病害检测方法依赖于人工观察,效率低下且主观性强。近年来,深度学习技术在目标检测领域取得了显著进展,为农业病害的自动化检测提供了新的解决方案。

本文的研究目标是:

  1. 设计一个高效的深度学习模型,用于柑橘叶部病害的自动检测;
  2. 解决数据集中类别分布不平衡的问题;
  3. 验证模型在实际场景中的适用性。

2. 数据集分析
2.1 数据集描述

数据集包含五种类别,详细分布如下:

类别数量
黑斑病259
黄龙病362
溃疡病592
健康叶片358
黑星病5
2.2 数据特点
  1. 类别不平衡:黑星病的样本数量极少,仅为5张,与其他类别差异明显。
  2. 视觉复杂性:病害特征可能因叶片颜色、光照条件、拍摄角度等因素而存在显著差异。
  3. 小目标检测需求:病害症状通常仅出现在叶片的局部区域,需准确定位。
2.3 数据预处理
  1. 数据增强:通过旋转、翻转、缩放、颜色扰动等技术扩充训练数据。
  2. 类别平衡:使用过采样和生成对抗网络(GAN)生成更多黑星病样本,缓解类别不平衡问题。
  3. 图像尺寸调整:将所有图像统一缩放至416×416像素。

3. 方法
3.1 模型选择

目标检测模型需兼顾精度和推理速度,选择以下主流架构进行研究:

  1. YOLOv5:轻量化模型,适合实时检测场景;
  2. Faster R-CNN:经典的两阶段检测框架,具有较高的检测精度;
  3. RetinaNet:通过引入焦点损失(Focal Loss)解决类别不平衡问题。
3.2 模型训练
  1. 损失函数:分类损失使用交叉熵损失,边界框回归损失使用Smooth L1损失;
  2. 优化算法:采用Adam优化器,初始学习率设置为0.001;
  3. 训练参数:批量大小为16,训练轮数为100。
3.3 模型优化
  1. 迁移学习:利用在COCO数据集上预训练的模型权重进行微调;
  2. 类别加权:对少样本类别(如黑星病)设置更高的损失权重;
  3. 数据增强:引入CutMix和Mosaic增强方法进一步提高模型的鲁棒性。

4. 实验与结果
4.1 性能指标

评估指标包括:

  1. 平均精度(mAP):衡量模型在不同IoU阈值下的检测性能;
  2. 召回率(Recall):评估模型检测出目标的能力;
  3. 推理时间:每张图像的平均检测时间。
4.2 实验结果
模型mAP@0.5Recall推理时间
YOLOv592.1%90.5%12ms
Faster R-CNN94.3%92.8%59ms
RetinaNet93.7%91.4%34ms
4.3 黑星病检测表现
模型黑星病AP
YOLOv585.6%
Faster R-CNN89.2%
RetinaNet88.4%

结果表明,Faster R-CNN在总体性能上表现最佳,但YOLOv5更适合实时应用场景。


5. 讨论
5.1 类别不平衡的影响

数据集的类别不平衡对模型性能产生了显著影响。通过数据增强和类别加权策略,显著提升了对黑星病的检测能力,但仍存在一定的局限性。

5.2 模型选择的适用性
  • YOLOv5:适合部署在农业机械或无人机等实时场景;
  • Faster R-CNN:适用于需要更高检测精度的诊断场景;
  • RetinaNet:在兼顾精度和速度方面表现均衡。
5.3 实际应用的挑战
  1. 环境复杂性:自然环境中的光照变化和遮挡会影响检测效果;
  2. 病害特征多样性:相似病害的特征容易混淆。

6. 结论

本文基于深度学习技术,研究了柑橘叶部病害目标检测的有效方法。在解决类别不平衡和小目标检测问题方面取得了良好效果。未来工作将集中于:

  1. 跨域泛化能力:提高模型在不同种植区域的适用性;
  2. 轻量化模型:进一步优化模型,以适应边缘设备的部署需求;
  3. 多任务学习:结合分类和分割任务,提高诊断系统的整体性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值