121221

卷积定理是对两个函数进行加权平移叠加,连续域的卷积如下:
F(x)=∫_(-∞)^∞▒〖f(x’)g(x-x’)dx’〗
图数据结构的傅里叶变换依赖于拉普拉斯矩阵的特征向量,因此使用正则化拉普拉斯矩阵L来表示图数据的结点的边信息:
L=I-D^(-1/2) AD^(-1/2)
其中A为图的邻接矩阵,D为结点度的矩阵,根据正则化拉普拉斯矩阵的对称半正定性质,使用特征向量矩阵U和特征值矩阵Λ来表示L:
L=UΛU^T
传统傅里叶变换是将原始数据映射到以三角波为基底的空间中,图傅里叶变换是将原始图数据投影到特征向量为基底的空间中,基于图数据的傅里叶变化与逆变换为:
x ̂=F(x)=U^T x
x=F^(-1) (x ̂ )=Ux ̂
基于卷积定理和傅里叶变换,实现图卷积定理:
〖(x*y)〗G=U((U^T x)⊛(U^T y))
使用对角阵g_θ表示向量U^T y,将上式的哈达玛乘法转化为矩阵乘法,最终图卷积公式为:
Ug_θ U^T
基于图卷积公式,可以得到基本的图卷积定理:
X_j(h+1)=σ(∑_(i=1)m▒〖U⊝
(i,j)^h U^T 〗 X_i^h ) j=1,…,n,
m,n表示输入特征和输出特征的维度,X_ih∈Rn是图上结点在第h层的第i个输入特征,⊝_(i,j)^h表示卷积核,σ是激活函数。
为降低计算复杂度,采用切比雪夫网络对卷积核进行参数化:
g_θ=∑_(i=0)^(K-)▒〖θ_k T_k (Λ ̂)〗
得到基于切比雪夫网络的图卷积定理:
X_j(h+1)=σ(∑_(i=1)m▒〖U〖(∑_(i=0)^(K-)▒〖θ_k T_k (Λ ̂)〗)U〗^T 〗 X_i^h ) j=1,…,n,

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值