前面提到的1/2系数
将向量表达式转化为矩阵表达式则有J(θ)=1/2m ∑_(i=1)^m▒(h_θ (x^((ⅈ) ))-y^((i)) )^2 转为J(θ)=1/2 (xθ-y)^2 ,其中 x为 m⾏ n列的矩阵 (m为训练集实例个数,n为特征个数),θ为n⾏1列的矩阵, y为m ⾏1列的矩阵,对J(θ)进⾏如下变换:
J(θ)=1/2 (xθ-y)^T (xθ-y)
=1/2 (θ^T xT-yT )(x_θ-y)
=1/2 (θ^T x^T xθ-θ^T x^T y-y^T xθ-y^T y)
接下来对J(θ)求偏导:
∂J(θ)/∂θ=1/2 (2x^T xθ-x^T y-(y^T x)^T-0)
=1/2 (2x^T xθ-x^T y-x^T y-0)
=x^T xθ-x^T y
令∂J(θ)/∂θ=0,则有θ=(x^T x)^(-1) x^T y 可以看出系数1/2在式中被完美约去,所以添加1/2系数可
以使得表达式简洁精炼。