代价函数表达式中为啥添加的系数是1/2

前面提到的1/2系数

将向量表达式转化为矩阵表达式则有J(θ)=1/2m ∑_(i=1)^m▒(h_θ (x^((ⅈ) ))-y^((i)) )^2 转为J(θ)=1/2 (xθ-y)^2 ,其中 x为 m⾏ n列的矩阵 (m为训练集实例个数,n为特征个数),θ为n⾏1列的矩阵, y为m ⾏1列的矩阵,对J(θ)进⾏如下变换:
J(θ)=1/2 (xθ-y)^T (xθ-y)
=1/2 (θ^T xT-yT )(x_θ-y)
=1/2 (θ^T x^T xθ-θ^T x^T y-y^T xθ-y^T y)
接下来对J(θ)求偏导:
∂J(θ)/∂θ=1/2 (2x^T xθ-x^T y-(y^T x)^T-0)
=1/2 (2x^T xθ-x^T y-x^T y-0)
=x^T xθ-x^T y
令∂J(θ)/∂θ=0,则有θ=(x^T x)^(-1) x^T y 可以看出系数1/2在式中被完美约去,所以添加1/2系数可
以使得表达式简洁精炼。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值