题目链接:https://vjudge.net/problem/UVA-1635
(紫书320)
题解:
1.根据二项式定理, 可得递推公式: C(n,k) = (n-k+1)/k * C(n, k-1)
2.某一项与余数(%m)无关, 即表明该项的的系数是m的倍数, 由于 1<=n<=1e5, 直接运算的话肯定溢出。
所以 :将数字进行分解质因数, 记录质因子以及其个数。由于题目只需判断某项的系数是否为m的倍数, 所以只需要考虑m所拥有的质因子。
3.fac[i]记录m的质因数, num_m[i]记录m的质因数fac[i]的个数, num_c[i]记录二项式系数(动态)的质因数fac[i]的个数。
4.对于所有的i, 如果num_c[i] >= num_m[i] 则表明此系数是m的倍数, 即此项与余数无关。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <sstream>
#include <algorithm>
using namespace std;
#define pb push_back
#define mp make_pair
#define ms(a, b) memset((a), (b), sizeof(a))
#define eps 0.0000001
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+7;
const int maxn = 1e5+10;
int n, m, cnt;
int fac[maxn], num_m[maxn], num_c[maxn];
int ans[maxn], sum;
void init()
{
n = n - 1; //题目从a[1]~a[n], 而二项式定理中, 从a[0]~a[n], 所以要与二项式定理中的n对应。
ms(num_m, 0);
ms(num_c, 0);
cnt = 0;
int tmp = m;
for(int i = 2; i*i<=tmp; i++)
{
if(tmp%i==0)
{
fac[++cnt] = i;
while(tmp%i==0) tmp /= i, num_m[cnt]++;
}
}
if(tmp>1) fac[++cnt] = tmp, num_m[cnt]++;
}
int test(int x)
{
int a = n-x+1;
int b = x;
for(int i = 1; i<=cnt; i++)
{
while(a%fac[i]==0) num_c[i]++, a /= fac[i];
while(b%fac[i]==0) num_c[i]--, b /= fac[i];
}
for(int i = 1; i<=cnt; i++)
if(num_m[i]>num_c[i]) return 0;
return 1;
}
void solve()
{
sum = 0;
for(int i = 1; i<=n-1; i++) //二项式的第0项和第n项都为1, 不需要考虑
if(test(i))
ans[++sum] = i+1; //二项式的第i项, 对应题目中的第i+1项
printf("%d\n", sum);
for(int i = 1; i<=sum; i++)
printf("%s%d", i==1?"":" ", ans[i]);
putchar('\n');
}
int main()
{
while(scanf("%d%d",&n, &m)!=EOF)
{
init();
solve();
}
}