Harmonic Number (II) LightOJ - 1245 (找规律)

Problem Description

I was trying to solve problem ‘1234 - Harmonic Number’, I wrote the following code

long long H( int n ) {
    long long res = 0;
    for( int i = 1; i <= n; i++ )
        res = res + n / i;
    return res;
}

Yes, my error was that I was using the integer divisions only. However, you are given n n n, you have to find H ( n ) H(n) H(n) as in my code.

Input

Input starts with an integer T ( ≤ 1000 ) T (≤ 1000) T(1000), denoting the number of test cases.

Each case starts with a line containing an integer n ( 1 ≤ n &lt; 231 ) n (1 ≤ n &lt; 231) n(1n<231).

Output

For each case, print the case number and H ( n ) H(n) H(n) calculated by the code.

Sample Input

11
1
2
3
4
5
6
7
8
9
10
2147483647

Sample Output

Case 1: 1
Case 2: 3
Case 3: 5
Case 4: 8
Case 5: 10
Case 6: 14
Case 7: 16
Case 8: 20
Case 9: 23
Case 10: 27
Case 11: 46475828386

题意:
给出 T T T 组数据求出 n ÷ 1 + n ÷ 2 ⋅ ⋅ ⋅   ⋅ + n ÷ n n\div 1+n\div2\cdot \cdot \cdot\ \cdot+n\div n n÷1+n÷2 +n÷n的结果;

做题之前先考虑一个问题:

(☄⊙ω⊙ ? ? ? ^{???} ???)☄

看个表再说

被除数121212121212121212121212
序号123456789101112
除数123456789101112
1264322111111

从表中我们可以观察到 5 5 5 虽然不是 12 12 12 的倍数但是由于计算机本身取整的原理得到 12 ÷ 5 = 2 12\div 5=2 12÷5=2;但是 2 × 6 2\times6 2×6 才是 12 12 12,所以我们用 12 ÷ 2 12\div 2 12÷2 就可以得到 12 12 12 的真正“除数” 6 6 6.。

由此我们也可以观察到,如果 5 5 5 6 6 6 之间还有许多整数那么 12 12 12 除去这个数还是为 2 2 2 例如从 7 7 7 12 12 12 之间的商始终为 1 1 1;所以我们只需求出能被 12 12 12 整除的数,记录两点之间的数的个数就可以算出 12 ÷ 1 + ⋅ ⋅ ⋅   ⋅ + 1 12\div 1+\cdot \cdot \cdot\ \cdot+1 12÷1+ +1 的结果了;

根据上面的规律不难得出此题的解题方法

( ′◔ ⊙ \odot ◔`)

看代码:

#include<iostream>
using namespace std;
#define ll long long
int main()
{
    int t,z=0;
    cin>>t;
    while(t--)
    {
        ll n;
        cin>>n;
        ll sum=0;
        ll k=1;//记录上一个能被n整除的数
        for(ll i=1; i<=n; i=k+1)
        {
            k=n/(n/i);//找到能被n整除的位置
            sum+=(n/i)*(k-i+1);//把区间的和存入sum
        }
        cout<<"Case "<<++z<<": "<<sum<<endl;
    }
    return 0;
}

实践是检验真理的唯一标准

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值