基于Python大数据的BOSS招聘数据分析与可视化平台 毕业设计-附源码70434

摘要

随着互联网的迅速发展,招聘数据在规模和复杂性上呈现爆炸式增长,对数据的深入分析和有效可视化成为招聘决策和招聘管理的重要手段。本论文旨在构建一个基于Python大数据的BOSS招聘数据分析与可视化平台。

该平台以BOSS直聘等主流招聘平台为数据源,利用Python编程语言及其相关库如Pandas、Matplotlib和Seaborn等,对招聘数据进行采集、清洗、分析和可视化。首先,通过网络爬虫技术获取招聘网站上的各类招聘信息,并进行数据清洗和预处理,以确保数据质量。其次,利用Pandas库对数据进行结构化处理和分析,包括数据的统计描述、聚合和转换等。然后,借助Matplotlib和Seaborn等可视化库,将数据以图表的形式展示出来,包括但不限于柱状图、折线图、饼图等,以直观形式呈现招聘市场的趋势和特征。最后,通过构建交互式界面,使用户可以灵活选择感兴趣的招聘数据进行分析和可视化,提升用户体验和数据分析的灵活性。实验结果表明,该平台能够有效地帮助企业和个人更好地了解招聘市场的动态,为招聘决策提供科学依据和参考。

关键词:招聘数据分析与可视化平台;Python语言;Django;大数据爬虫

Abstract

With the rapid development of the Internet, recruitment data has shown an explosive growth in scale and complexity. Deep analysis and effective visualization of data have become an important means of recruitment decision-making and talent management. This paper aims to build a BOSS recruitment data analysis and visualization platform based on Python big data.

This platform uses mainstream recruitment platforms such as BOSS direct recruitment as data sources, and uses Python programming language and related libraries such as Pandas, Matplotlib, and Seaborn to collect, clean, analyze, and visualize recruitment data. Firstly, various recruitment information on recruitment websites is obtained through web crawler technology, and data cleaning and preprocessing are carried out to ensure data quality. Secondly, use the Pandas library to structure and analyze the data, including statistical description, aggregation, and transformation of the data. Then, with the help of visual libraries such as Matplotlib and Seaborn, the data is presented in the form of charts, including but not limited to bar charts, line charts, pie charts, etc., to visually present the trends and characteristics of the recruitment market. Finally, by constructing an interactive interface, users can flexibly select recruitment data of interest for analysis and visualization, improving the user experience and flexibility of data analysis. The experimental results indicate that the platform can effectively help enterprises and individuals better understand the dynamics of the recruitment market, providing scientific basis and reference for recruitment decision-making.

Keywords: Recruitment data analysis and visualization platform; Python language; Django; Big data crawler

目录

摘要

Abstract

第 1 章 引  言

1.1 选题背景

1.2 研究目的和意义

1.3 研究现状

1.4 论文结构安排

第 2 章 相关理论和技术

2.1 B/S体系结构介绍

2.2 Django框架介绍

2.3 MySQL数据库

2.4 Python语言

第 3 章 系统需求分析

3.1 系统可行性分析

3.1.1 技术可行性分析

3.1.2 经济可行性分析

3.1.3 操作可行性分析

3.2 系统需求分析

3.2.1 功能需求分析

3.2.2 功能需求分析

3.3 系统用例分析

3.4 系统流程分析

3.4.1 用户登录操作流程

3.4.2 用户修改密码流程

3.4.3 爬取招聘信息流程

3.5 本章小节

第 4 章 系统总体设计

4.1 系统架构设计

4.2 系统功能模块设计

4.3 数据库设计

4.3.1 数据库概念结构设计

4.3.2 数据库逻辑结构设计

4.4 本章小结

第 5 章 关键模块的设计与实现

5.1 前台首页模块

5.2 登录模块

5.3 注册模块

5.4 招聘交流模块

5.5 招聘资讯模块

5.6 招聘信息模块

5.7 团队活动模块

5.8 个人中心模块

5.9 系统用户管理模块

5.10 系统管理模块

第 6 章 系统测试

6.1 测试的目的

6.2 系统部分测试

6.3 系统测试结果

第 7 章 结论

参考文献

致谢

  • 1 章 引  言
    1. 选题背景

随着智能化和数据化的发展,大数据分析在各个领域的应用日益普遍,其中人力资源管理也不例外。随着互联网招聘的兴起,越来越多的企业开始将招聘数据作为重要的决策依据,企业需要通过招聘来获取招聘资源,而求职者也需要通过招聘平台找到适合自己的工作机会。在这个过程中,大数据技术可以帮助企业更好地理解招聘市场的需求和供给,从而提高招聘效率和成功率。

目前市面上已经存在了很多招聘平台,如BOSS直聘、拉勾网、猎聘等,它们提供了各种各样的招聘信息,包括职位信息、薪资待遇、公司信息等。这些数据量大、多样性强,可以为企业和求职者提供重要的参考信息。因此,通过对这些招聘数据进行分析与可视化,可以帮助企业更好地了解招聘市场的动态,优化招聘策略;同时,也可以帮助求职者更好地了解职位需求和市场趋势,提高求职成功率。

    1. 研究目的和意义

本论文选取BOSS直聘的招聘数据为研究对象,希望通过对这些数据进行深入分析,揭示招聘市场的一些规律和趋势。同时,结合Python编程语言和数据可视化技术,构建一个可视化平台,帮助用户更直观地理解招聘数据,为招聘管理和决策提供更全面和准确的参考。

通过对招聘数据的分析,可以帮助企业了解各行业、各职位的招聘状况,从而制定更为有效的招聘策略。分析招聘数据可以揭示不同职位的需求量、薪资水平等信息,帮助求职者更好地选择职业发展方向,推动招聘市场的健康发展。

综上所述,基于Python大数据的BOSS招聘数据分析与可视化平台的研究具有重要的理论和实践意义,有利于促进企业的人力资源管理优化,提升招聘市场的效率和公平性。

    1. 研究现状

随着互联网技术的快速发展,招聘行业也逐渐从传统的线下招聘向线上转移,越来越多的招聘信息通过互联网平台发布和获取。这一趋势使得招聘数据呈现出爆炸性增长的态势,传统的人工分析方法已经无法满足对这些海量数据的处理和分析需求。因此,基于大数据爬虫技术的招聘数据分析与可视化平台应运而生,旨在通过自动化地采集、处理和分析招聘数据,为企业、招聘机构和求职者提供更加精准、全面的招聘信息,辅助其进行招聘决策和职业规划。

国内外许多研究已经开始探索如何利用大数据技术来处理和分析招聘数据。例如,利用数据挖掘和机器学习算法对招聘网站上的大量简历和职位信息进行分析,从中挖掘出潜在的匹配关系和趋势。在招聘数据可视化方面,也已经涌现出了一些优秀的研究成果。这些研究致力于将庞大的招聘数据以图形化、直观化的方式展现出来,帮助用户更好地理解和利用这些数据。例如,通过制作交互式的地图、图表和网络图来展示不同地区、行业和职位的招聘情况,从而帮助用户发现就业机会和招聘需求的分布规律。一些企业和研究机构已经开始开发和应用招聘数据分析平台,旨在为用户提供全面的招聘数据采集、处理、分析和可视化服务。这些平台通常整合了大数据爬虫、数据挖掘、机器学习和可视化技术,为用户提供定制化的招聘数据分析解决方案。

尽管大数据在招聘数据采集方面具有巨大的潜力,但是也面临着诸多技术挑战,如数据质量、隐私保护和算法优化等方面。未来的研究可以重点关注如何提升数据采集的效率和准确性,以及如何利用深度学习等新技术来挖掘和利用招聘数据中的潜在价值。

    1. 论文结构安排

本文共分为七章,章节内容安排如下:

第一章为引言,此章节对所设计和实现的系统的背景和状况以及意义进行详细的论述以及说明,同时进行了论文整体框架的结构的简要介绍。

第二章为相关理论和技术介绍,主要对系统的框架、开发语言和数据库进行了简要概述。

第三章为项目概述,章节所做的主要的工作是对项目背景、项目的可行性分析与相关技术和工具简介进行了描述;对系统实行了总体功能的需求、用例进行了分析。

第四章为系统的设计,主要是对系统的功能结构进行设计,并对系统数据库的概念结构以及物理结构的设计进行了分析。

第五章就是对系统的实现,根据系统功能的划分,分别的对系统所需要实现的前台客户功能和后台管理员功能进行了分析和说明。

第六章:系统测试。主要对系统的部分界面进行测试并对主要功能进行测试

第七章:总结。

B/S体系,即Browser/Server体系,是一种常见的网络应用程序架构。其工作原理基于客户端与服务器之间的请求-响应模型。用户通过浏览器向服务器发送请求,服务器接收到请求后进行处理,并生成相应的响应结果,最终将响应返回给客户端。浏览器接收到服务器返回的响应后,解析其中的标记语言(如HTML),并根据CSS样式表和PythonScript脚本来渲染页面,呈现给用户。用户可以与页面进行交互,例如点击链接、填写表单等操作,这些操作会触发新的请求,循环执行上述过程。

    1. Django框架介绍

Django是一个使用Python语言开发的Web应用程序框架。它提供了一种简单而强大的方式来构建复杂的网站和应用程序。通过使用Django,开发人员可以更轻松地处理数据库、创建用户界面和处理用户请求。它还提供了一个自动生成管理界面的功能,使得管理后台数据变得更加简单。Django还具有强大的安全功能,可以保护网站免受常见的网络攻击。总之,Django是一个非常实用和易于学习的框架,适用于各种规模的Web项目。无论你是初学者还是经验丰富的开发人员,都可以从Django的便利性和灵活性中受益。

    1. MySQL数据库

MySQL是一种广泛使用的开源关系型数据库管理系统(RDBMS),其稳定性、可靠性和卓越性能使其成为众多应用程序的首选数据库。MySQL支持标准SQL语法,并提供丰富的功能和特性,如事务处理、触发器和存储过程等,以满足开发者对数据管理和操作的需求。MySQL具有良好的可扩展性,支持主从复制、分布式架构和集群部署,适用于各种规模和负载的应用场景。作为一个开源项目,MySQL拥有庞大的用户社区和活跃的开发者社区,为用户提供了丰富的文档、教程和支持资源。总之,MySQL是一款可靠、强大且灵活的关系型数据库管理系统,通过其卓越性能和可扩展性,帮助开发者高效地管理和操作数据,并得到了广大用户的认可和应用。

    1. Python语言

Python是一种简洁易读、跨平台且功能强大的编程语言。它拥有庞大而活跃的社区,提供了丰富的第三方库和框架,如NumPy、Pandas和Django,使开发人员能够快速构建各种应用程序。Python在数据处理和科学计算方面表现出色,通过相关库和工具,可以进行数据分析、机器学习和科学计算等任务。此外,Python广泛应用于Web开发、自动化脚本、网络爬虫等领域,其多样性使其成为一个全能的编程语言。无论你是初学者还是有经验的开发者,Python的简单语法、跨平台性以及强大的社区支持都能为你提供高效、优雅和可靠的编程体验。总之,Python是一个强大而灵活的编程语言,深受开发人员喜爱,并在各个领域得到广泛应用。

  • 3 章 系统需求分析
    1. 系统可行性分析

在软件开发的过程中,可行性分析是至关重要的,它旨在评估问题的可行性,以便尽可能快地解决,同时也要考虑到不同的解决方案的优势和劣势,以及实施这些方案所带来的经济效益。通过对基于Python大数据的BOSS招聘数据分析与可视化平台的可行性分析,我们可以从技术、经济和操作三个方面来评估其可行性,从而为其提供有效的支持和保障。

      1. 技术可行性分析

在技术可行性方面,我们选择使用大数据版的Python作为开发语言,结合相应的框架Django,以实现系统的功能需求。Python作为一种简洁而强大的编程语言,具有丰富的库支持和成熟的开发社区,可以满足BOSS招聘数据分析与可视化平台的开发需求。Django作为Python的Web框架,提供了高度可扩展的开发环境,使得系统的设计和实现更加便捷和高效。

      1. 经济可行性分析

本系统设计所选择的开发工具和服务器都是免费的开源软件,又或者是适合学生使用的免费版本,并不需要支付费用,而且由作者本人单独完成,也不存在团队费用,几乎没有经济成本,具备经济可行性。

      1. 操作可行性分析

操作方面主要考虑的是用户在使用以及管理人员在管理的时候,是否简单可行,没有任何计算机基础的用户能否使用,开发的BOSS招聘数据分析与可视化平台在设计的时候秉承简单易学的理念,在用户进入系统后都会有固定的导航按钮,只要认字就可以操作完成,而且管理员在管理方面也只需简单的增删改查即可完成,因此在操作上也是可行的。

    1. 系统需求分析
      1. 功能需求分析

基于Python大数据的BOSS招聘数据分析与可视化平台的开发目的很简单,就是旨在通过利用Django技术,构建一个高效精准的BOSS招聘数据分析与可视化平台按照平台的角色,划分为了学生用户模块、企业用户模块和管理员模块这三大部分。

学生用户端:

(1)用户注册:注册页面输入账号、设置密码、确认密码、昵称、邮箱、选择身份、用户姓名、用户性别、联系电话、商品类型等信息,点击“立即注册”,注册成功会提示“注册成功”。注册成功后回到首页。

(2)用户登录:点击登录,登录时前端会自动校验输用户名、密码,输入正确登录成功,输入错误会有对应提示信息。

(3)招聘交流:用户点击“招聘交流”菜单显示所有的招聘交流,可以按照分类查看帖子信息,或者输入关键词进行局部搜索,点击可以进入帖子的详细展示界面,在此界面用户可以点赞、收藏、评论。

(4)公告消息:用户点击“公告消息”以后,系统当中所有的公告消息都会展示出来,如果想要了解某一公告消息的详细信息,点击后面的“详情”会进入详情界面。

(5)招聘资讯:用户点击“招聘资讯”可以搜索查看资讯信息,并可对资讯信息进行点赞、收藏和发表评论等操作。

(6)招聘信息:点击菜单栏“招聘信息”就会显示出所有的招聘信息,可以根据搜索企业名称查看招聘详细信息,包括企业账号、企业名称、公司规模、所属行业、城市名称、所在区域、公司地址、招聘职位、薪资待遇、招聘学历、招聘技能、经验要求、招聘要求等,可对招聘信息进行应聘、点赞、收藏和发表评论等操作。

(7)团队活动:点击菜单栏“团队活动”就会显示出所有用户发布的团队活动,可以根据搜索团队名称查看团队活动详细信息,包括团队名称、活动名称、活动时间、活动地点、适合人群 、活动详情等,可对团队活动进行点赞、收藏和发表评论等操作。

(8)我的账户:可以修改个人信息资料以及修改密码。

(9)个人中心:用户点击右上角的“用户名”,然后点击“个人中心”便可查看个人首页、应聘信息、面试通知、交流列表和收藏信息。

企业用户端:

(1)用户登录:企业用户账号由管理员后台添加。点击登录,登录时前端会自动校验输用户名、密码,输入正确登录成功,输入错误会有对应提示信息。

(2)查看BOSS招聘数据分析与可视化平台的首页信息:BOSS招聘数据分析与可视化平台的首页信息包含了首页、招聘交流、公告消息、招聘资讯、招聘信息、团队活动等。

(3)我的账户:在前台点击“我的”下面的“我的账户”可以对个人资料+密码修改进行管控。

(4)个人中心:企业用户点击右上角的“用户名”,然后点击“个人中心”便可查看个人首页、应聘信息、面试通知、交流列表和收藏信息。

管理员端:

(1)个人资料:对个人的基本信息以及对自己账号登录的密码进行修改。

(2)系统用户:在系统用户管理模块中主要分了三部分,分别是管理员、企业用户和学生用户,如果需要添加新的用户,点击页面中的“添加”按钮根据提示输入上用户信息,点击“提交”以后在对应的用户界面就可以查看到了,可以点击用户后面的“删除”按钮直接删除某一用户。

(3)招聘信息管理:管理员执行管理招聘信息列表,可以对招聘信息进行查询、添加、重置或删除。如果需要添加新的招聘数据,可以点击爬取按钮爬取新的招聘信息,也可以对用户提交的招聘评论的信息进行管控。

(4)应聘信息管理:管理员点击“应聘信息管理”系统会把BOSS招聘数据分析与可视化平台当中所有用户提交的应聘信息都显示出来,可以对应聘信息信息进行审核回复,添加面试通知。

(5)面试通知管理:管理员点击“面试通知管理”会显示出系统所有的面试通知,支持增删改查。

(6)团队活动管理:点击“团队活动管理”这个按钮可以查看到系统中所有发布的招聘信息,管理员可进行详情查看、添加或删除等相应操作。也可以管控用户发布的评论信息。

(7)系统管理:主要是轮播图管理,可进行查询、删除、添加,查看详情等操作,添加的轮播图在前台首页展示。

(8)公告消息管理:可进行查询、重置、删除、添加,查看详情等操作,添加的公告消息在前台首页展示。

(9)资源管理:主要是对系统展示的招聘资讯以及资讯分类进行增删改查等操作。

(10)交流管理:主要是招聘交流信息和分类信息的添加,添加的招聘交流在前台首页展示。

      1. 非功能需求分析

 非功能性分析旨在评估BOSS招聘数据分析与可视化平台的非功能需求和性能要求。通过对性能、可靠性、安全性、可用性和扩展性等方面进行评估,确保平台能够满足用户和系统运行的要求。具体如下3-1表格中:

3-1BOSS招聘数据分析与可视化平台非功能需求表

非功能性要求

说明

性能

评估响应时间、并发用户数、吞吐量等指标,以确保平台稳定高效地运行。

可靠性

评估系统的稳定性、容错能力和数据完整性,保障系统在故障情况下正常运行。

安全性

评估用户身份认证、数据加密和访问控制等,保护用户信息和交易的安全。

可用性

评估系统的稳定性、故障处理能力和用户界面友好性,提供良好的用户体验。

扩展性

评估系统的可扩展性和灵活性,以便根据需求进行功能扩展和升级。

    1. 系统用例分析

系统用例分析是对BOSS招聘数据分析与可视化平台中各个功能模块的用户需求和行为进行分析,以识别和描述不同的用户用例。通过系统用例分析,可以深入了解用户在平台上的操作流程和交互方式,为系统设计和开发提供指导,并确保平台能够满足用户的需求和期望。

BOSS招聘数据分析与可视化平台中用户角色用例图如图3-1所示:

图3-1 用户角色用例图

BOSS招聘数据分析与可视化平台中企业用户角色用例图如图3-2所示:

图3-2企业用户角色用例图

BOSS招聘数据分析与可视化平台中企管理员角色用例图如图3-3所示:

图3-3管理员角色用例图

    1. 系统流程分析

业务流程是用一些特定的符合和线条来进行演示用户在使用系统时的过程,在进行系统分析的时候,业务流程可以帮助开发人员更好的理解业务,发现错误,完善系统。

      1. 用户登录操作流程

普通用户登录需要校验用户名、密码是否输入正确,是否输入为空,具体流程图如图所示:

图3-4用户登录流程图

      1. 用户修改密码流程

普通用户可以修改原来设置的密码,具体流程图如图所示。

图3-5用户修改密码流程图

      1. 爬取招聘信息流程

爬取招聘信息,输入关键字等信息,并校验输入是否正确,招聘信息爬取流程图,如图所示。

图3-6 爬取招聘信息流程图

    1. 本章小节

本章主要通过对BOSS招聘数据分析与可视化平台的可行性分析、功能需求分析、系统用例分析和系统流程分析,确定了该系统所需实现的功能。这些分析结果为BOSS招聘数据分析与可视化平台的代码实现和测试提供了标准和指导。可行性分析考虑了技术、经济和操作的可行性,确保系统的实施可行;功能需求分析明确了系统需要实现的功能模块和具体要求;系统用例分析细化了系统功能,并定义了参与者、前置条件和基本流程;系统流程分析详细揭示了系统的运行流程和数据流动路径。这些分析结果为开发团队提供了明确的目标和指导,可以根据需求逐步实现各个功能模块,并在测试阶段验证系统是否满足预期要求。同时,分析结果也为未来的系统扩展和升级提供了基础和参考依据。

  • 4 章 系统总体设计
    1. 系统架构设计

在系统架构设计中,我们将确定系统的整体结构和组件之间的关系。这包括选择适当的架构风格,划分系统的层次结构,并定义各个模块的职责和交互方式。架构图如下图4-1所示。

图4-1BOSS招聘数据分析与可视化平台架构设计图

表现层(Presentation Layer):负责与用户进行交互,将系统的功能和数据以易于理解和操作的方式展示给用户。通常包括用户界面、页面设计和用户输入验证等。

业务逻辑层(Business Logic Layer):处理系统的核心业务逻辑,包括对用户请求的处理、业务规则的执行以及数据的处理和转换。它独立于表现层和数据层,实现了业务逻辑的封装和复用。

数据层(Data Layer):负责数据的存储、访问和管理,包括数据库和持久化机制。数据层提供了对数据的增删改查操作,并与业务逻辑层进行交互,使系统能够有效地存储和检索数据。

这三个层次相互独立,通过明确的接口和协议进行通信,实现了系统的模块化和可扩展性。表现层负责将用户的请求传递给业务逻辑层,业务逻辑层处理请求并返回结果,最后数据层负责与数据库交互并提供数据支持。这种分层架构有助于实现系统的可维护性、灵活性和可测试性。

    1. 系统功能模块设计

通过整体功能模块设计,我们将根据需求分析的结果,将系统的功能划分为不同的模块。每个模块负责实现特定的功能,并与其他模块进行协作。我们将详细定义每个模块的输入、输出、处理逻辑和相互依赖关系。具体的功能模块图如图4-2所示。

图4-2 BOSS招聘数据分析与可视化平台功能模块图

    1. 数据库设计

数据库设计是系统开发中至关重要的一环,它涉及到数据的组织、存储和管理。在数据库设计中,我们将根据系统的需求设计数据库的概念结构和逻辑结构,包括定义实体、属性、关系和约束等。

      1. 数据库概念结构设计

数据库概念结构设计主要涉及数据库的实体和实体之间的关系。通过实体-关系模型或者其他适当的模型,我们将定义系统中涉及的各个实体以及它们之间的联系。下面是整个BOSS招聘数据分析与可视化平台中主要的数据库表总E-R实体关系图。

图4-3BOSS招聘数据分析与可视化平台总E-R关系图

      1. 数据库逻辑结构设计

数据库逻辑结构设计则是在概念结构的基础上,进行具体的数据库表设计。我们将定义每个表的结构、字段和约束,并建立表与表之间的关系。具体如下: 

表access_token (登陆访问时长)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

token_id

int

10

0

N

Y

临时访问牌ID

2

token

varchar

64

0

Y

N

临时访问牌

3

info

text

65535

0

Y

N

4

maxage

int

10

0

N

N

2

最大寿命:默认2小时

5

create_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

创建时间:

6

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间:

7

user_id

int

10

0

N

N

0

用户编号:

表article (文章:用于内容管理系统的文章)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

article_id

mediumint

8

0

N

Y

文章id:[0,8388607]

2

title

varchar

125

0

N

Y

标题:[0,125]用于文章和html的title标签中

3

type

varchar

64

0

N

N

0

文章分类:[0,1000]用来搜索指定类型的文章

4

hits

int

10

0

N

N

0

点击数:[0,1000000000]访问这篇文章的人次

5

praise_len

int

10

0

N

N

0

点赞数

6

create_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

创建时间:

7

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间:

8

source

varchar

255

0

Y

N

来源:[0,255]文章的出处

9

url

varchar

255

0

Y

N

来源地址:[0,255]用于跳转到发布该文章的网站

10

tag

varchar

255

0

Y

N

标签:[0,255]用于标注文章所属相关内容,多个标签用空格隔开

11

content

longtext

2147483647

0

Y

N

正文:文章的主体内容

12

img

varchar

255

0

Y

N

封面图

13

description

text

65535

0

Y

N

文章描述

表article_type (文章分类)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

type_id

smallint

5

0

N

Y

分类ID:[0,10000]

2

display

smallint

5

0

N

N

100

显示顺序:[0,1000]决定分类显示的先后顺序

3

name

varchar

16

0

N

N

分类名称:[2,16]

4

father_id

smallint

5

0

N

N

0

上级分类ID:[0,32767]

5

description

varchar

255

0

Y

N

描述:[0,255]描述该分类的作用

6

icon

text

65535

0

Y

N

分类图标:

7

url

varchar

255

0

Y

N

外链地址:[0,255]如果该分类是跳转到其他网站的情况下,就在该URL上设置

8

create_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

创建时间:

9

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间:

表auth (用户权限管理)

编号

名称

数据类型

长度

小数位

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值