[bzoj4854][Jsoi2016]无界单词【dp】

【题目描述】

 一个长度为n的字符串,只包含A,B这两种字母,若kmp后next[n]=0则称这个字符串为无界单词。

 回答两个问题:

1.长度为n的字符串共有多少个无界单词。

2.长度为n,按字典序排序后第k个字符串是什么。(保证存在)

【题解】

 正着做很难统计答案,反着做比较简单。

设f[i]=长度为i时有多少个无界单词,考虑从全集中减去有界单词的数量。

 1.一个有界单词,可能会有许多位置前后缀相同,为了避免重复计算,我们在最短的前后缀计算。

 2.若j为最短的相同前后缀,那么必然有next[j]=0,所以变成了之前的子问题。

 3.最短的相同前后缀一定<当前长度/2(画图证明);

 4.其他位置可以随便填。

所以第一问:f[i]=sigma(j<i/2) f[j]*2^(i-j*2)

对于第二问:一位一位确定即可,统计答案方法同第一问,去掉不合法的状态。

/* --------------
    user Vanisher
    problem bzoj-4854 
----------------*/
# include <bits/stdc++.h>
# define 	N 		110
# define 	ll 		long long
using namespace std;
ll f[N],n,k,s[N],ths[N];
ll mypow(ll x, ll y){
	ll i=x; x=1;
	while (y>0){
		if (y%2==1) x=x*i;
		i=i*i;
		y/=2;
	}
	return x;
}
ll read(){
	ll tmp=0, fh=1; char ch=getchar();
	while (ch<'0'||ch>'9'){if (ch=='-') fh=-1; ch=getchar();}
	while (ch>='0'&&ch<='9'){tmp=tmp*10+ch-'0'; ch=getchar();}
	return tmp*fh;
}
ll solve(ll x){
	if (x==1) f[x]=2;
	if (f[x]!=-1) return f[x];
	ll now=mypow(2,x);
	for (ll i=1; i<=x/2; i++)
		now=now-mypow(2,x-i*2)*solve(i);
	f[x]=now;
	return f[x];
}
ll getsum(ll x, ll k){
	if (s[x]!=-1) return s[x];
	if (x<=k){
		bool f=false;
		for (ll i=1; i<=x/2; i++){
			bool flag=true;
			for (ll j=1; j<=i; j++)
				if (ths[j]!=ths[x-i+j]){
					flag=false; break;
				}
			if (flag==true){
				f=true; break;
			}	
		}
		if (f==true) s[x]=0; else s[x]=1;
		return s[x];
	}
	if (x==1) return 2;
	ll now=mypow(2,x-k);
	for (ll i=1; i<=x/2; i++){
		ll l=max(k+1,i+1), r=x-i, len;
		if (l>r) len=0; else len=r-l+1;
		bool flag=true;
		for (ll j=1; j<=i; j++)
			if (ths[j]!=ths[x-i+j]&&k>=x-i+j)
				flag=false;
		if (flag==true) now=now-mypow(2,len)*getsum(i,k);
	}
	s[x]=now;
	return s[x]; 
}
int main(){
	ll opt=read();
	while (opt--){
		n=read(), k=read();
		memset(f,-1,sizeof(f));
		printf("%lld\n",solve(n));
		for (ll i=1; i<=n; i++){
			ths[i]=0;
			memset(s,-1,sizeof(s));
			if (getsum(n,i)<k)
				ths[i]=1, k=k-getsum(n,i);
		}
		for (ll i=1; i<=n; i++)
			printf("%c",ths[i]+'a');
		printf("\n");
	}
	return 0;
}



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值