Gan(Generative Adversarial Net)学习笔记(1)--- Gan的基础理论

本文介绍了Gan的基本原理,Gan是生成器和判别器的博弈过程,生成器试图生成逼真的图像,而判别器旨在区分真实和虚假图像。Gan的特点包括使用潜在代码、无需马尔可夫链,被认为能生成高质量样本。同时,文章讨论了生成模型的作用,如密度估计和样本生成,并指出Gan在收敛、连续值决策等问题上面临的挑战。
摘要由CSDN通过智能技术生成

注:参考自知乎用户 何之源的《GAN学习指南:从原理入门到制作生成Demo以及

      ‘机器之心’的《独家 | GAN之父NIPS 2016演讲现场直击:全方位解读生成对抗网络的原理及未来》。

--------------------------------------------------------------------------------------------------------

一、Gan原理介绍:

  以生成图片为例,假设有两个网络:G(Generator)和D(Discriminator)。功能分别为:
  • G是生成器,用来生成图片,接收一个随机的噪声z,通过z生成图片,记作G(z)。
  • D是判别器,用来判断一张图片是不是“真实的”。输入x(代表一张图片),输出D(x),表示x为真实图片的概率。
 在训练过程中,G的目标是尽可能生成一张图片去欺骗D,使D将其判别为真实的;D的目标就是尽量把G生成的图片和真实的图片分别开。这样,就生成了一个“对抗过程”。

 在最理想的状态下,对抗的结果是,G生成足以以假乱真的图片G(z),D难以判定他究竟是不是真的,因此此时D(G(z)) = 0.5。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值