2022-09-03 HBase架构原理

一、HBase概述

1. 逻辑结构

(1) 表结构

术语解释
row key行键,类似于关系型数据库中的主键,具有唯一性;HBase通过行键找数据的速度最快,行键会按照字典序进行排序。
column family列族,HBase中的任何一张表必须定义列族,列族内可以定义任意列。
column列,定义列之前,必须要定义出列族;和关系型数据库不同,每一行数据的列可以不同:例如一行数据有3列,另一行数据有2列;并且这两行数据的列名也可以不同。

(2) Region

 HBase会将表中的数据划分为多个区域(Region),交由集群中的服务器负责管理。

(3) Store

 在每一个Region中,会根据列族继续进行划分,每一个列族会被划分为一个Store

2. 物理存储结构

逻辑结构中的每个Store是某一个列族中的所有数据的集合,这个数据集合在物理层面上使用了一个或者多个HFile格式的文件进行存储,HFile文件存储的内容为(以一行数据进行说明):

名称解释
row key行键,代表对哪一条数据进行操作,行键唯一确定一条表中数据
column famliy name列族名,表示操作的是哪一个列族
column name列名,表示操作的是指定列族中的哪一个列名
timestamp进行该操作的时间戳,标识数据的版本,时间戳越大,表示该条操作越新,HBase会读取最新的操作
type操作的类型(修改、添加、删除)
value修改或者添加操作所对应的值

HFile中的数据会被组织为一个一个的小块(Block)进行存储。

3. 数据模型

术语解释
namespace命名空间,类似于关系数据库中的database;HBase自带了两个namespace,分别是:hbase、default,hbase中存放了元数据,default是提供给用户使用的默认数据库。
table
cell单元,HFile中的每行数据都是一个单元

二、HBase原理

1. 架构

(1) 集群架构

名称解释
HMaster负责管理HBase集群中的RegionServer,指定哪些RegionServer负责维护哪些Region以及监控RegionServer的状态,当发现某一台RegionServer挂掉之后,会将其维护的Region交由其他几台RegionServer维护。
RegionServer负责维护分配给自己的Region:当某一个Region中的数据量太大时分裂(Region Split)、合并某一个Region中的HFile并且物理性的删除一些过期数据(Region Compaction)、接受客户端请求,提供或者修改或者删除数据。
Zookeeper内部存储HBase的一些信息,比较重要的是存储了HBase中元数据的Region位置,元数据中记录了所有数据的Region位置。

(2) RegionServer架构

名称解释
memstore写缓存,HBase不会立刻将数据写入HFile中,而是会先将其写入memstore中,当memstore满足阈值条件时,会将其中的数据刷写到HFile中
WAL

由于数据要经MemStore后才能刷写到HFile,但把数据保存在内存中会有很高的概率导致数据丢失,为了解决这个问题,数据会写入预写日志中,然后再写入MemStore中。所以在系统出现故障的时候,数据可以通过这个日志文件重建。

Block Cache读缓存,读取HFile后,会将其中读取的部分块(Block)放入该缓存中,以加快下一次再次读取该数据的读取速度。但是该缓存也不会无限膨胀,会根据算法将最近不常读取的块从缓存中清除掉。

2. 写流程

3. MemStore Flush

刷写时机:

(1)当一个Region中某个Store中的memstore中的数据达到阈值(配置项:hbase.hregion.memstore.flush.size,默认128M)时,那么该Region中的所有Store中的memstore会将数据刷写到HFile中;

memstore中数据大小达到了:hbase.hregion.memstore.flush.size(默认值128M* hbase.hregion.memstore.block.multiplier(默认值4),会阻止继续往该memstore中写入数据。

(2)当一个RegionServer中所有memstore中数据大小达到:java_heapsize * hbase.regionserver.global.memstore.size(默认值0.4) * hbase.regionserver.global.memstore.size.lower.limit(默认值0.95RegionServer会按照memstore中数据从大到小的顺序,依次刷写到HFile中;直到RegionServer中所有memstore中数据低于设定值;

RegionServer中所有的memstore中数据大小达到:java_heapsize * hbase.regionserver.global.memstore.size(默认值0.4会阻止继续往该RegionServer中所有的memstore中写入数据。

(3) 当达到自动刷写时间(配置项:hbase.regionserver.optionalcacheflushinterval,默认1小时),memstore会向HFile中写数据。

4. 读流程

 HBase在查找数据的时候使用了优化手段:根据时间戳过滤、根据row key过滤、根据布隆过滤器过滤。

5. StoreFile Compaction(合并Store中的HFile以及清理过期数据)

(1) Minor Compaction:合并相邻较小的HFile并进行部分的物理清理,每次memstore flush后都有可能发生;

(2) Major CompactionStore下的所有HFile进行合并,进行全部的物理清理,周期性发生;

6. Region Split(Region过大后,进行切分,交由不同RegionServer维护)

Region Split时机:

(1) 当1Region中的某个Store下所有HFile的总大小超过hbase.hregion.max.filesize,该Region就会进行拆分(0.94版本之前)。

(2)当1Region中的某个Store下所有HFile的总大小超过Min(initialSize*R^3 ,hbase.hregion.max.filesize"),该Region就会进行拆分。其中initialSize的默认值为2*hbase.hregion.memstore.flush.sizeR为当前Region Server中属于该TableRegion个数(0.94版本之后)。

具体的切分策略为:

第一次split1^3 * 256 = 256MB

第二次split2^3 * 256 = 2048MB

第三次split3^3 * 256 = 6912MB

第四次split4^3 * 256 = 16384MB > 10GB,因此取较小的值10GB

后面每次splitsize都是10GB了。

(3) Hbase 2.0引入了新的split策略:如果当前RegionServer上该表只有一个Region,超过2 * hbase.hregion.memstore.flush.size后进行分裂,否则按照超过hbase.hregion.max.filesize后进行分裂。

注意:HFile、WAL这些文件都存储在hdfs上,目的是为了多副本保证数据可靠。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值