DFS
在深度优先搜索中,对于最新发现的顶点,如果它还有以此为顶点而未探测到的边,就沿此边继续探测下去,当顶点v的所有边都已被探寻过后,搜索将回溯到发现顶点v有起始点的那些边。这一过程一直进行到已发现从源顶点可达的所有顶点为止。如果还存在未被发现的顶点,则选择其中一个作为源顶点,并重复上述过程。整个过程反复进行,直到所有的顶点都被发现时为止。
//模板
function dfs(当前状态, 一系列其他的状态量){
if(当前状态 == 目的状态){
···
}
for(···寻找新状态){
if(状态合法){
vis[访问该点];
dfs(新状态);
?是否需要恢复现场->vis[恢复访问]
}
}
if(找不到新状态){
是否需要创建新规则?{
创建并对当前状态进行访问vis;
继续搜索;
恢复现场/恢复访问vis;
}
}
}
排列数字
//测试实例,排列数字
#include<iostream>
using namespace std;
const int N = 10;
int n;
int num[N];
bool b[N];
void dfs(int u){
if(u==n){
for(int i = 0;i<n;i++) printf("%d ",num[i]);
printf("\n");
return ;
}
for(int i = 1;i<=n;i++){
if(!b[i]){
num[u] = i;
b[i] = true;
dfs(u+1);
b[i] = false;
}
}
return ;
}
int main(){
scanf("%d",&n);
dfs(0);
return 0;
}
解决n皇后问题
//n-皇后问题
#include<iostream>
using namespace std;
const int N = 11;
char q[N][N];
bool dg[N * 2], udg[N * 2], cor[N];
int n;
void dfs(int r)
{
if(r == n)
{
for(int i = 0; i < n; i++)
{
printf("%s\n",q[i]);
}
printf("\n");
return;
}
for(int i = 0; i < n; i++)
{
if(!cor[i] && !dg[i + r] && !udg[n - i + r])
{
q[r][i] = 'Q';
cor[i] = dg[i + r] = udg[n - i + r] = 1;
dfs(r + 1);
cor[i] = dg[i + r] = udg[n - i + r] = 0;
q[r][i] = '.';
}
}
}
int main(){
scanf("%d",&n);
for(int i = 0;i<n;i++)
for(int j = 0;j<n;j++)
q[i][j] = '.';
dfs(0);
return 0;
}
//更一般的暴力做法解决n-皇后问题
#include <iostream>
using namespace std;
const int N = 11;
char q[N][N];
bool row[N], dg[N * 3], udg[N * 3], cor[N];
int n;
void dfs(int x, int y, int s) {
if (y == n) {
y = 0;
x++;
}
if (x == n) {
if (s == n) {
for (int i = 0; i < n; i++) printf("%s\n", q[i]);
printf("\n");
}
return; // 需要在这里返回,否则会继续递归
}
dfs(x, y + 1, s);
if (!row[x] && !cor[y] && !dg[x + y] && !udg[n + x - y]) {
q[x][y] = 'Q';
row[x] = cor[y] = dg[x + y] = udg[n + x - y] = 1;
dfs(x, y + 1, s + 1);
row[x] = cor[y] = dg[x + y] = udg[n + x - y] = 0;
q[x][y] = '.';
}
}
int main() {
scanf("%d", &n);
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
q[i][j] = '.';
dfs(0, 0, 0);
return 0;
}