在三角函数中,“正”、“余”、“弦”、"割"这些词汇源自古代的几何学术语,它们与三角形的边和角的关系密切相关。
1. 三角函数的基本术语
中文术语 | 英文术语 | 记忆技巧 |
---|---|---|
正弦 | Sine (sin) | “Sine” 源于拉丁语 “sinus” 意为“弦”,记忆时可以联想到“弦” |
余弦 | Cosine (cos) | “Cosine” 是 “complementary sine”的缩写,指“余角的正弦” |
正切 | Tangent (tan) | “Tangent” 源于几何中的“切线”,表示斜率 |
余切 | Cotangent (cot) | “Cotangent” 是 “complementary tangent”的缩写 |
正割 | Secant (sec) | “Secant” 来自几何中的“割线”,表示与圆相交的直线 |
余割 | Cosecant (csc) | “Cosecant” 是 “complementary secant”的缩写 |
术语间的联系
通过对比,可以看出很多英文术语之间有一定的对应规律,尤其是“cosine”“cotangent”“cosecant”前缀“co-”的使用。“co-” 表示的是“余角(complementary angle)”的含义,这一点非常重要,因为它帮助我们记住哪些函数是与正弦、正切等函数互为余角函数。
-
正弦(sine)与余弦(cosine):
- Sine(sin) 直接与角度相关,表示正弦。
- Cosine(cos) 则是“sine”的补角函数,表示与余角对应的余弦。
- 记忆技巧:通过“co-”联想到余角,“cosine”就是“余角的正弦”。
-
正切(tangent)与余切(cotangent):
- Tangent(tan) 表示角度的正切,源自几何中的“切线”。
- Cotangent(cot) 是正切的补角函数,表示与余角对应的余切。
- 记忆技巧:通过“co-”联想到余角,“cotangent”是“余角的正切”。
-
正割(secant)与余割(cosecant):
- Secant(sec) 表示正割,源自几何中的“割线”。
- Cosecant(csc) 是正割的补角函数,表示与余角对应的余割。
- 记忆技巧:通过“co-”联想到余角,“cosecant”是“余角的正割”。
2. 弦的几何背景及正弦、余弦的有界性
-
弦的定义
在几何学中,弦是指连接圆周上两点的线段。弦可以位于圆的任意位置,连接圆上任何两点。当弦经过圆心时,它被称为直径,这是圆中最长的弦。
-
正弦和余弦的定义
在三角函数中,正弦(sin)和余弦(cos)这两个名称都源自弦的概念。正弦表示的是直角三角形中,对应角的对边与斜边的比值,而余弦表示的是邻边与斜边的比值。在单位圆中,正弦和余弦可以分别看作角的终边与y轴和x轴的投影:
- 正弦(sin θ):单位圆中,角度终边在y轴上的投影。
- 余弦(cos θ):单位圆中,角度终边在x轴上的投影。
-
正弦和余弦的值域为何有界
由于单位圆的半径恒为1,因此正弦和余弦的投影长度最多等于1,最少等于-1。这意味着无论角度怎么变化,正弦和余弦的值都只能在[-1, 1]之间波动。这一几何限制导致了正弦和余弦的值域是有界的,即它们的取值范围是有限的:
- 正弦:sin θ ∈ [-1, 1]
- 余弦:cos θ ∈ [-1, 1]
3. 割线的几何背景及正割、余割的无界性
-
割线的定义
在几何中,割线是指一条与圆相交于两个点的直线,它穿过圆并且可以延伸到无限远。与弦不同,割线是无限延伸的直线,而弦是有限的线段。
-
正割和余割的定义
在三角函数中,正割和余割是余弦和正弦的倒数:
- 正割(sec θ):斜边与邻边的比值,即余弦的倒数。sec θ = 1 / cos θ。
- 余割(csc θ):斜边与对边的比值,即正弦的倒数。csc θ = 1 / sin θ。
-
正割和余割的值域为何无界
由于正割和余割是余弦和正弦的倒数,当余弦或正弦接近0时,正割和余割的值会趋近于无穷大。例如,当角度接近90度(π/2)时,余弦的值趋近于0,因此正割的值会变得非常大。同理,余割在正弦接近0时也会趋于无穷大。
由于三角函数可以在某些角度下取极值,因此正割和余割的值域是无界的,即它们可以取任意大的正数或负数:
- 正割:sec θ ∈ (-∞, -1] ∪ [1, ∞)
- 余割:csc θ ∈ (-∞, -1] ∪ [1, ∞)
4. 切线的几何背景及正切、余切的无界性
-
切线的定义
在圆的几何中,切线是指一条与圆相切,仅在圆的一个点与圆相交的直线。切线与割线类似,都是无限延伸的直线。
-
正切和余切的定义
在三角函数中,正切(tan)和余切(cot)分别是对边与邻边、邻边与对边的比值:
- 正切(tan θ):对边与邻边的比值,tan θ = sin θ / cos θ。
- 余切(cot θ):邻边与对边的比值,cot θ = cos θ / sin θ。
-
正切和余切的值域为何无界
正切函数可以理解为在单位圆上,终边的斜率。当角度接近90度(π/2)时,斜率会变得非常陡峭,趋近于无穷大,因此正切函数的值域是无界的。同理,余切函数是正切的倒数,它的值域也同样无界:
- 正切:tan θ ∈ (-∞, ∞)
- 余切:cot θ ∈ (-∞, ∞)
5. 几何概念与值域的对应关系
通过弦、割线、切线这些几何概念,可以更好地理解三角函数的值域特性:
- 弦对应的正弦和余弦,因其在单位圆内表示有限的线段投影,导致它们的值域是有界的,范围在[-1, 1]之间。
- 割线对应的正割和余割,因它们是余弦和正弦的倒数,在接近0时趋向无穷大,导致它们的值域是无界的。
- 切线对应的正切和余切,因它们反映了终边的斜率变化,斜率可以任意增大或减小,导致它们的值域也是无界的。