Keras机器学习基本知识-基本图像分类

本文仅为本人的巩固与学习,例子源自Tensorflow的官方文档

加载必要的库

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

导入自带的 Fashion MNIST 数据集

直接从 TensorFlow 中导入和加载 Fashion MNIST 数据
fashion_mnist = tf.keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

Fashion MNIST 数据集都相对较小,都用于验证某个算法是否按预期工作。对于代码的测试和调试,它们都是很好的起点。

每个图像都会被映射到一个标签。由于数据集不包括类名称,请将它们存储在下方,供稍后绘制图像时使用:

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

浏览数据

train_images.shape 
# (60000, 28, 28) 训练集中有 60,000 个图像,每个图像由 28 x 28 的像素表示
len(train_labels)
# 60000 训练集中有 60,000 个标签(数据)
train_labels
# array([9, 0, 0, ..., 3, 0, 5], dtype=uint8) 每个标签都是一个 0 到 9 之间的整数
test_images.shape
# (10000, 28, 28) 测试集中有 10,000 个图像。同样,每个图像都由 28x28 个像素表示
len(test_labels)
# 10000 测试集包含 10,000 个图像标签(数据)

预处理数据

检查训练集中的第一个图像,看到像素值处于 0 到 255 之间

plt.figure()
plt.imshow(train_images[0]) # 数据转的图片
plt.colorbar() # 颜色条
plt.grid(False) # 不显示网格
plt.show()

训练集中的第一个图像,
将这些值缩小至 0 到 1 之间(归一化)(这是后面算法的要求?),然后将其馈送到神经网络模型。为此,请将这些值除以 255。以相同的方式对训练集和测试集进行预处理

train_images = train_images / 255.0

test_images = test_images / 255.0

构建模型

设置层

tf.keras.Sequential

model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10)
])

该网络的第一层tf.keras.layers.Flatten(输入层) 将图像格式从二维数组(28 x 28 像素)转换成一维数组(28 x 28 = 784 像素)。该层没有要学习的参数,它只会重新格式化数据。

展平像素后,网络会包括两个 tf.keras.layers.Dense 层(计算层与输出层)的序列。它们是密集连接或全连接神经层。第一个 Dense 层有 128 个节点(或神经元)。第二个(也是最后一个)层会返回一个长度为 10 的 logits 数组。每个节点都包含一个得分,用来表示当前图像属于 10 个类中的哪一类。

编译模型

model.compile添加损失函数,选择优化器 - 决定模型如何根据其看到的数据和自身的损失函数进行更新,模型评估指标 - 用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

训练模型 - 拟合

训练神经网络模型需要执行以下步骤:

  1. 将训练数据馈送给模型。在本例中,训练数据位于 train_images 和 train_labels 数组中。
  2. 模型学习将图像和标签关联起来。
  3. 要求模型对测试集(在本例中为 test_images 数组)进行预测。
  4. 验证预测是否与 test_labels 数组中的标签相匹配。

向模型馈送数据

要开始训练,请调用 model.fit 方法,这样命名是因为该方法会将模型与训练数据进行“拟合”:

model.fit(train_images, train_labels, epochs=10)
# accuracy: 0.9099

评估准确率

比较模型在测试数据集上的表现model.evaluate

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

print('\nTest accuracy:', test_acc)
# Test accuracy: 0.8794000148773193

结果表明,模型在测试数据集上的准确率略低于训练数据集。训练准确率和测试准确率之间的差距代表过拟合。过拟合是指机器学习模型在新的、以前未曾见过的输入上的表现不如在训练数据上的表现。过拟合的模型会“记住”训练数据集中的噪声和细节,从而对模型在新数据上的表现产生负面影响。

进行预测

tf.keras.Sequential 附加一个 Softmax 层,将模型的线性输出 logits 转换成更容易理解的概率。

probability_model = tf.keras.Sequential([model, 
                                         tf.keras.layers.Softmax()])
predictions = probability_model.predict(test_images)

查看预测结果

predictions[0]
'''
array([8.5380130e-08, 1.2862756e-06, 1.7201529e-07, 2.4579521e-09,
       1.1657544e-05, 3.9379053e-02, 3.2284350e-07, 2.0818772e-02,
       3.1966898e-08, 9.3978864e-01], dtype=float32)
'''

预测结果是一个包含 10 个数字的数组。它们代表模型对 10 种不同服装中每种服装的“置信度”。您可以看到哪个标签的置信度值最大:

np.argmax(predictions[0])
# 9

因此,该模型非常确信这个图像是短靴,或 class_names[9]。通过检查测试标签发现这个分类是正确的:

test_labels[0]
# 9

验证预测结果

num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
  plt.subplot(num_rows, 2*num_cols, 2*i+1)
  plot_image(i, predictions[i], test_labels, test_images)
  plt.subplot(num_rows, 2*num_cols, 2*i+2)
  plot_value_array(i, predictions[i], test_labels)
plt.tight_layout()
plt.show()

使用训练好的模型

img = (np.expand_dims(img,0))
predictions_single = probability_model.predict(img)

print(predictions_single)
plot_value_array(1, predictions_single[0], test_labels)
_ = plt.xticks(range(10), class_names, rotation=45)
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值