MapReduce 两个例子

本文通过两个实例深入探讨MapReduce的使用,包括字母出现次数的统计以及电影评分的总和计算,展示了MapReduce在大数据处理中的应用。
摘要由CSDN通过智能技术生成

字母计数问题

//Map阶段将数据转化为输出数据类型
public class WordCountMap extends Mapper<LongWritable, Text,Text, IntWritable> {
   
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
   
        String word = value.toString();//转化为java对象
        String[] words = word.split(" ");//拆分
        //   类型 每个值 循环数组  增强for
        for (String w:words){
   
            context.write(new Text(w), new IntWritable(1));//输出
        }
    }
}
//Reduce 阶段将Map中输出的数据进行归纳处理
public class WordCountReduce extends Reducer<Text, IntWritable, Text,IntWritable>{
   
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
   
        Integer count = 0;//设初始个数为0
        for (IntWritable v : values
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值