简化的 `Transformer` 编码器(Encoder)和解码器(Decoder)的 PyTorch 代码示例

Transformer 是由 Google 提出的用于自然语言处理(NLP)任务的一个深度学习模型架构,它基于自注意力(self-attention)机制。以下是一个简化的 Transformer 编码器(Encoder)和解码器(Decoder)的 PyTorch 代码示例。请注意,这个示例仅用于教学目的,并未包含完整的 Transformer 架构(如位置编码、层归一化、残差连接等)。

import torch
import torch.nn as nn
import torch.nn.functional as F

class MultiHeadAttention(nn.Module):
    # 这是一个简化的多头注意力机制实现,用于演示
    def __init__(self, d_model, num_heads):
        super(MultiHeadAttention, self).__init__()
        self.num_heads = num_heads
        self.d_model = d_model
        
        assert d_model % self.num_heads == 0
        
        self.depth = d_model // self.num_heads
        
        self.wq = nn.Linear(d_model, d_model)
        self.wk = nn.Linear(d_model, d_model)
        self.wv = nn.Linear(d_model, d_model)
        
        self.dense = nn.Linear(d_model, d_model)
        
    def split_heads(self, x, batch_size):
        x = x.reshape(batch_size, -1, self.num_heads, self.depth)
        return x.permute(0, 2, 1, 3)
    
    def forward(self, v, k, q, mask):
        batch_size = q.shape[0]
        
        q = self.wq(q)  # (batch_size, seq_len, d_model)
        k = self.wk(k)  # (batch_size, seq_len, d_model)
        v = self.wv(v)  # (batch_size, seq_len, d_model)
        
        q = self.split_heads(q, batch_size)  # (batch_size, num_heads, seq_len_q, depth)
        k = self.split_heads(k, batch_size)  # (batch_size, num_heads, seq_len_k, depth)
        v = self.split_heads(v, batch_size)  # (batch_size, num_heads, seq_len_v, depth)
        
        # Scaled Dot-Product Attention
        scaled_attention_logits = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.depth, dtype=torch.float32))
        
        if mask is not None:
            scaled_attention_logits += (mask * -1e9)  # Add the mask to the scaled tensor.
            
        attention_weights = nn.Softmax(dim=-1)(scaled_attention_logits)  # (batch_size, num_heads, seq_len_q, seq_len_k)
        
        output = torch.matmul(attention_weights, v)  # (batch_size, num_heads, seq_len_q, depth)
        output = output.permute(0, 2, 1, 3).contiguous()  # (batch_size, seq_len_q, num_heads, depth)
        output = output.reshape(batch_size, -1, self.d_model)  # (batch_size, seq_len_q, d_model)
        
        output = self.dense(output)  # (batch_size, seq_len_q, d_model)
        
        return output, attention_weights

# 这里省略了 Transformer 的其他组件,如前馈神经网络、位置编码、层归一化等。

# 如果你想要完整的 Transformer 编码器或解码器,你还需要实现这些组件,并把它们组合在一起。

注意:上面的 MultiHeadAttention 类仅实现了多头注意力机制的核心部分,并没有包含完整的 Transformer 编码器或解码器。一个完整的 Transformer 编码器通常包括一个多头注意力层、一个前馈神经网络(FFN)以及可能的层归一化和残差连接。解码器则通常包括两个多头注意力层(一个自注意力层和一个编码器-解码器注意力层)以及一个前馈神经网络。

  • 8
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
由于ciciids2017数据集是一个自然语言处理数据集,因此可以使用Transformer模型对其进行处理。下面是使用PyTorch实现VoVNet-Transformer模型的示例代码: ```python import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable # 定义VoVNet模型 class VoVNet(nn.Module): def __init__(self): super(VoVNet, self).__init__() # 定义卷积层 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(128) self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(256) # 定义池化层 self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) def forward(self, x): # 计算卷积 x = self.conv1(x) x = F.relu(self.bn1(x)) x = self.conv2(x) x = F.relu(self.bn2(x)) x = self.conv3(x) x = F.relu(self.bn3(x)) # 计算池化 x = self.pool(x) return x # 定义Transformer模型 class Transformer(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim, num_layers, num_heads): super(Transformer, self).__init__() # 定义embedding层 self.embedding = nn.Embedding(input_dim, hidden_dim) # 定义Transformer层 self.transformer = nn.Transformer(d_model=hidden_dim, nhead=num_heads, num_encoder_layers=num_layers, num_decoder_layers=num_layers) # 定义全连接层 self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, src, trg): # 计算输入序列的embedding src_emb = self.embedding(src) trg_emb = self.embedding(trg) # 计算Transformer out = self.transformer(src_emb, trg_emb) # 计算全连接层 out = self.fc(out) return out # 定义VoVNet-Transformer模型 class VoVNetTransformer(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim, num_layers, num_heads): super(VoVNetTransformer, self).__init__() # 定义VoVNet模型和Transformer模型 self.vovnet = VoVNet() self.transformer = Transformer(input_dim, hidden_dim, output_dim, num_layers, num_heads) def forward(self, x, src, trg): # 计算图像特征 x = self.vovnet(x) # 计算文本特征 out = self.transformer(src, trg) # 将图像特征和文本特征进行拼接 out = torch.cat([x, out], dim=1) return out # 定义模型参数 input_dim = 10000 # 输入序列的长度 hidden_dim = 512 # embedding的维度 output_dim = 1 # 输出的维度 num_layers = 6 # Transformer的层数 num_heads = 8 # 多头注意力机制的头数 # 创建模型实例 model = VoVNetTransformer(input_dim, hidden_dim, output_dim, num_layers, num_heads) # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 for epoch in range(num_epochs): # 计算模型输出 outputs = model(x, src, trg) # 计算损失函数 loss = criterion(outputs, y) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 输出损失函数的值 print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) ``` 在上面的代码中,我们首先定义了VoVNet模型和Transformer模型,然后在VoVNetTransformer模型中将它们结合起来。在训练模型时,我们使用MSELoss作为损失函数,优化器使用Adam。在每个epoch中,我们计算模型输出、损失函数,并进行反向传播和优化。最后输出损失函数的值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dalao_zzl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值