codeforces 1023D Array Restoration 线段树

题目链接:http://codeforces.com/problemset/problem/1023/D

之前想的时候忘了如果序列中没有q,也没有0时应该输出no

先特判,若果没有q并且有0,则先任意将一个0置为q,然后将所有的0置为他们相邻的值。这样不会影响序列的合法性,并且序列中没有了0,只需判断是否合法即可

用线段树查询一个数字出现的两个端点之间是否有比它小的数,如果有输出no,如果每个数都没有输出yes

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
#define mod 1000000007
#define For(i,m,n) for(int i=m;i<=n;i++)
#define Dor(i,m,n) for(int i=m;i>=n;i--)
#define LL long long
#define lan(a,b) memset(a,b,sizeof(a))
using namespace std;


const int N=200010;

struct node
{
    int l,r;
    int m;//存储值
};

node tree[N*4];
int a[N],b[N],c[N];

void build(int n ,int l,int r)
{
    tree[n].l=l;
    tree[n].r=r;
    if(l==r)
    {
        tree[n].m=a[l];//视情况
        return;
    }
    int mid=(l+r)>>1;
    build(n*2,l,mid);
    build(n*2+1,mid+1,r);
    tree[n].m=min(tree[n*2].m,tree[n*2+1].m);/看线段树种类
}

int query(int n,int l,int r)
{
    if(l>r)
        return -1;
    if(tree[n].l==l&&tree[n].r==r)
    {
        return tree[n].m;
    }
    int mid=(tree[n].r+tree[n].l)/2;

    int res=0;
    if(r<=mid)
        res=query(n*2,l,r);
    else if(l>=mid+1)
        res=query(n*2+1,l,r);
    else
    {
        res=query(n*2,l,mid);看线段树种类
        res=min(res,query(n*2+1,mid+1,r));看线段树种类
    }
    return res;
}

    int n,q;
        int f=0;
bool pin()
{

    For(i,1,q)
    {
        if(b[i]!=inf)
        {
            if(query(1,b[i],c[i])<i)
                return false;
        }
    }

        printf("YES\n");
        For(i,1,n)
        if(i==n)
            printf("%d\n",a[i]);
        else
            printf("%d ",a[i]);
return true;

}

int main()
{
    while(~scanf("%d%d",&n,&q))
    {
        lan(b,inf);
        lan(c,0);
        lan(tree,0);
        lan(a,0);
        f=0;
        int maxx=-1;
        For(i,1,n)
        {
            scanf("%d",&a[i]);
            if(a[i]==0)f++;
            else
            {
                b[a[i]]=min(i,b[a[i]]);
                c[a[i]]=max(i,c[a[i]]);
            }
            maxx=max(maxx,a[i]);
        }
        if(f==n)
        {
            printf("YES\n");
            For(i,1,n)
            if(i==n)
                printf("%d\n",q);
            else
                printf("%d ",q);
                continue;
        }
        if(maxx!=q&&f==0)
        {
            printf("NO\n");
            continue;
        }
        else if(maxx!=q&&f!=0)
        {
            For(i,1,n)
                if(!a[i]){a[i]=q;break;}
        }
            For(i,1,n)
                if(!a[i])a[i]=a[i-1];
            Dor(i,n,1)
                if(!a[i])a[i]=a[i+1];
        build(1,1,n);
        if(pin()==false)
        printf("NO\n");
    }
    return 0;
}

 

CodeForces - 616D是一个关于找到一个序列中最长的第k好子段的起始位置和结束位置的问题。给定一个长度为n的序列和一个整数k,需要找到一个子段,该子段中不超过k个不同的数字。题目要求输出这个序列最长的第k好子段的起始位置和终止位置。 解决这个问题的方法有两种。第一种方法是使用尺取算法,通过维护一个滑动窗口来记录\[l,r\]中不同数的个数。每次如果这个数小于k,就将r向右移动一位;如果已经大于k,则将l向右移动一位,直到个数不大于k。每次更新完r之后,判断r-l+1是否比已有答案更优来更新答案。这种方法的时间复杂度为O(n)。 第二种方法是使用枚举r和双指针的方法。通过维护一个最小的l,满足\[l,r\]最多只有k种数。使用一个map来判断数的种类。遍历序列,如果当前数字在map中不存在,则将种类数sum加一;如果sum大于k,则将l向右移动一位,直到sum不大于k。每次更新完r之后,判断i-l+1是否大于等于y-x+1来更新答案。这种方法的时间复杂度为O(n)。 以上是两种解决CodeForces - 616D问题的方法。具体的代码实现可以参考引用\[1\]和引用\[2\]中的代码。 #### 引用[.reference_title] - *1* [CodeForces 616 D. Longest k-Good Segment(尺取)](https://blog.csdn.net/V5ZSQ/article/details/50750827)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Codeforces616 D. Longest k-Good Segment(双指针+map)](https://blog.csdn.net/weixin_44178736/article/details/114328999)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值