N皇后 java

代码


class Solution {
    public static List<List<String>> output;
    public List<List<String>> solveNQueens(int n) {
        output = new ArrayList<>();
        // 声明一个长度为n的数组用来代表 第n行棋子是在第result[n]列
        int[] result = new int [n];
        calnQueens(0, n, result);
        return output;
    }
    
    // n 皇后问题 row代表计算到了到第row行
    private static void calnQueens(int row, int n, int[] result){
        if (row == n){
            // 到达第n行代表已经得到一个将解决方案 直接返回即可
            // 根据result数组将结果加入到output列表中
            getPrint(result);
            return;
        }
        // 若不是第n行 则说明需要继续判断该行棋子应该在那一列
        for (int column = 0; column < n; column++){
            // 判断第row行 放置在column列的棋子是否满足要求
            if (isOK(row, column, result)){
                result[row] = column;
                // 递归判断下一行的情况
                calnQueens(row + 1, n, result);
            }
            // 不满足要求 回溯下一列 对应操作column++
        }
    }
    
    // row代表行数 column代表列数 result代表满足规则的棋子在第n行中的位置
    private static boolean isOK(int row, int column, int[] result){
        // 判断棋子的位置是否正确 不正确返回false
        for (int i = 0; i < row; i++){
            // 第一个条件排除的是相同列的问题
            // 第二个条件排除的是对角线列的左下角(这个地方错了,column - result[i] = -(row-i),斜率为-1呀,是右下角才对)
            // 第三个条件排除的是对角线列的右下角
            if (column == result[i] || column == result[i] - row + i || column == result[i] + row - i){
                return false;
            }
        }
        return true;
    }
    
    private static void getPrint(int[] result){
        List<String> one = new ArrayList<>();
        for (int row = 0; row < result.length; row++){
            // 一行一个StringBuilder
            StringBuilder str = new StringBuilder();
            for (int column = 0; column < result.length; column++){
                if (column == result[row]){
                    str.append("Q");
                }else{
                    str.append(".");
                }
            }
            one.add(str.toString()); 
        }
        output.add(one);
    }
}

我提交的解法

package com.daleyzou.leetcode;

import java.lang.management.MemoryType;
import java.util.ArrayList;
import java.util.List;

/**
 * LeetCode51
 * @description https://www.cnblogs.com/daleyzou/p/NQueen.html
 * @author daleyzou
 * @date 2019年12月25日 12:45
 * @version 3.1.0
 */
public class LeetCode51 {
    List<List<String>> resultList = new ArrayList<>();
    public List<List<String>> solveNQueens(int n) {

        int[] result = new int[n];
        backTrack(0, n, result);
        return resultList;
    }

    private void backTrack(int row, int n, int[] result) {
        if (row == n){
            printResult(result);
            return;
        }
        for (int column = 0; column < n; column++){
            if (isOK(row, column, result)){
                result[row] = column;
                backTrack(row + 1, n, result);
            }
        }

    }

    private boolean isOK(int row, int column, int[] result) {
        for (int i = 0; i < row; i++){
            if (column == result[i] || Math.abs(column - result[i]) == Math.abs(row - i)){
                return false;
            }
        }
        return true;
    }

    private void printResult(int[] result) {
        List<String> item = new ArrayList<>();
        for (int i = 0; i < result.length; i++){
            StringBuilder sb = new StringBuilder();
            for (int j = 0; j < result.length; j++){
                if (j == result[i]){
                    sb.append("Q");
                }else {
                    sb.append(".");
                }
            }
            item.add(sb.toString());
        }
        resultList.add(item);
    }
}
战斗是一种策略性的游戏,其中玩家需要在一个n×n的棋盘上放置n个皇后,使得它们互相之间不能攻击到对方。在Java中实现n皇后问题可以使用回溯算法来解决。 回溯算法是一种通过尝试所有可能的解决方案来找到问题解的方法。对于n皇后问题,我们可以使用一个一维数组来表示棋盘,数组的索引表示行数,数组的值表示皇后所在的列数。通过递归的方式,我们可以依次尝试每一行的每一列,如果当前位置满足条件,则继续递归下一行,否则回溯到上一行重新选择位置。 以下是一个简单的Java代码示例来解决n皇后问题: ```java public class NQueens { private int[] queens; // 用于存储每一行皇后所在的列数 private int count; // 解的数量 public int solveNQueens(int n) { queens = new int[n]; count = 0; backtrack(0, n); return count; } private void backtrack(int row, int n) { if (row == n) { // 找到一个解 count++; return; } for (int col = 0; col < n; col++) { if (isValid(row, col)) { queens[row] = col; // 在当前位置放置皇后 backtrack(row + 1, n); // 递归下一行 } } } private boolean isValid(int row, int col) { for (int i = 0; i < row; i++) { if (queens[i] == col || Math.abs(queens[i] - col) == row - i) { return false; // 判断是否与之前的皇后冲突 } } return true; } } ``` 使用上述代码,可以通过调用`solveNQueens(n)`方法来获取n皇后问题的解的数量。其中,`n`表示棋盘的大小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值