MathBase_02工程数学基础(第六讲-第十一讲)

MathBase 工程数学基础(第六讲-第十一讲)

  • Author:Dargon
  • Note date:2020/10/19
  • 学习视频来源:国防科技大学 MOOC

第六讲,内积空间

  • 度量矩阵
    将大G矩阵中的各元素用对应序号的内机空间来进行表示,且定义说明 G 是正定矩阵 成为度量矩阵(暂时没有发现那里可以用到)

  • 向量的正交 和施密特(schmidit)正交化
    两向量内积 为0 ,进行单位正交化 可以使用固定的公式
    单位化 就是一个向量除于自己的模长
    正交化 两向量相乘为0 (带入公式进行计算)

  • 求标准正交基
    就是将现有的基进行 单位化 正交化 结果就是一组标准正交基

第七讲,正交变换与对称变换

  • 正交变换
    看一下定义:
    设T 是欧式空间 V n V^n Vn上的线性变换,若对任意的 α , β ⊂ V n \alpha,\beta \subset V^n α,βVn 存在
    < T α , T β > = < α , β > <T \alpha, T \beta > =<\alpha,\beta> <Tα,Tβ>=<α,β>
    则T为V^n上的正交变换

一道例题 基本实现 找一个基使得T在这组新的基下面为对角阵

  1. 任意找一组基,算出T在基下的一个矩阵
  2. 求矩阵特征值,特征向量,将特征向量组成P ,就可以利用P将这个矩阵对角化(代数的基本知识),同时P 也就是这组基向新基的一个过渡矩阵
  3. 用原来的基(E1,E2,E3)分别乘以 P里面的列向量X1,X2,X3可以得到一组新的基,
  4. T在这组新的基下面的坐标就是可对角化的矩阵。
    第七讲对称变换01
    第七讲对称变换02
  • 旋转变换
    一个关于图像旋转的粗糙算法
    第七讲旋转变换01

  • 镜像变换(Householder变换)
    一个向量关于一个平面(或者其他的线或者更多维度的)镜像
    可以得到一个变换矩阵 H ( ω ) = I − 2 ω ω T \color{blue}H(\omega) =I -2\omega \omega^T H(ω)=I2ωωT

第八讲,矩阵的相似对角化

  • 相似对角化
    和以前的知识点没有变化

  • 特征子空间
    出现几何重数和代数重数
    直观上的理解 代数重数 是特征值的几次根例如 ( λ − 1 ) 3 (\lambda -1)^3 (λ1)3 代数重数就是3
    几何重数 是上面特征值 1所对应的特征向量有几个是独立的 (线性无关的)若是2 则几何重数就是 2
    这样一来就说明 几何重数 <= 代数重数的
    几何重数代表的都是的向量 代数重数里面包含有(可以被别人表示的)的向量
    几何重数为基础解析的个数 = (n -r) 可以在空间中有多少个维度(方向)可以扩散

  • 求解矩阵的相似对角化
    和前面知识一样,求特征值、求特征向量、组成矩阵P、然后 P − 1 A P = Λ P^{-1}AP =\Lambda P1AP=Λ

第九讲,Jordan标准型

  • jordan标准型出现的原因;
    由于在上一章节 求相似对角化

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值