G01倒立摆控制器设计
- Author:Dargon
- Note date:2020/12/13
- 课程用书:
LMIs in Control Systems Analysis,Design and Applications
1,倒立摆控制系统简介
- 倒立摆系统是一个复杂的控制系统,具有非线性、强耦合、多变量、不稳定等特性。 在控制过程中, 它能有效的反映控制中的许多关键问题,如镇定问题,非线性问题, 鲁棒性问题, 随动问题及跟踪问题恩等,都可以以倒立摆为对象加以研究。除此之外, 它和火箭的飞行及机器人关节运动有很多相似之处,其原理可用于控制火箭稳定发射。倒立摆的研究对于火箭飞行控制和机器人控制等现代高科技的研究具有重要的实践意义。因此倒立摆的控制成为控制理论中经久不衰的研究课题。在最近的 25 年里,许多经典和现代控制理论被用于倒立摆的稳定控制,例如 极点配置控制、LQR控制、状态反馈控制、鲁棒 H ∞ H_{\infty} H∞、智能控制、模糊控制、人工神经元控制。
- 从形式上可以将倒立摆系统分为以下几种:
- 直线倒立摆系统:或称为“小车-倒立摆系统”,是由可以沿直线导轨运动的小车及一端定于小车之上的匀质长杆组成的系统。
- 环形倒立摆系统:可以将它看成是将小车的直线导轨弯曲而成的系统。
- 平面倒立摆系统:匀质摆杆的底端可以在平面内自由运动,并且摆杆可以沿平面内的任一轴线转动。
- 柔性连接倒立摆系统:在原倒立摆系统的基础之上引入了新的自由振荡环节:自由弹簧系统。
- 柔性倒立摆系统:它不仅仅是将匀质刚体换成了柔性摆杆,而是其本身已经变为非线性分布参数系统。
- 直线柔性连接两级倒立摆:所谓直线柔性连接两级倒立摆系统,就是在直线刚性两级倒立摆的基础上,加入自由弹簧系统:电机连接一主动小车,而主动小车通过一根弹簧作用于从动小车,对固定于从动小车上的两级倒立摆实施控制。
2,倒立摆数学模型的分析与建立
2.1,模型分析
- 倒立摆系统如图1所示,一个带轮的小车,中间铰接刚性的倒立摆,小车沿着笔直的光滑轨道左右滑动,同事实现的摆杆可在垂直平面内自由运动,为方便分析,我们假设摩擦力都是足够的小,可以忽略不计。由动力学理论可推出一级倒立摆的运动方程。
M:小车的质量
m:摆杆的质量
L:摆杆质心到转轴的距离
I:摆杆的转动惯量
g: 重力加速度
b:小车与导轨之间的阻尼比
C: 摆杆与小车之间的阻尼比
θ \theta θ: 摆杆与竖直方向上的夹角
F:控制器的输出的外力
小车水平方向受力
M x ¨ = F − F N − b x ˙ (2.1) M\ddot{x} =F -F_N -b \dot{x} \tag{2.1} Mx¨=F−FN−bx˙(2.1)
摆杆的水平受力
F N = m d 2 ( x + L s i n θ ) d t 2 (2.2) F_N =m \frac{d^{2}(x +Lsin\theta)}{dt^2} \tag{2.2} FN=mdt2d2(x+Lsinθ)(2.2)
根据公式(2.1)、(2.2)可获得系统的一个运动学方程
F = ( M + m ) x ¨ + m L θ ¨ c o s θ − m L θ ˙ 2 s i n θ + b x ˙ (2.3) F =(M +m) \ddot{x} +mL\ddot{\theta}cos\theta -mL \dot{\theta}^{2}sin\theta +b \dot{x}\tag{2.3} F=(M+m)x¨+mLθ¨cosθ−mLθ˙2sinθ+bx˙(2.3)
摆杆的垂直方向受力
F P − m g = m d 2 ( L c o s θ ) d t 2 (2.4) F_P -mg =m \frac{d^2(Lcos \theta)}{dt^2} \tag{2.4} FP−mg=mdt2d2(Lcosθ)(2.4)
力矩平衡
I θ ¨ = F P L s i n θ − F N L c o s θ − c θ ˙ (2.5) I\ddot{\theta} =F_PLsin\theta -F_NLcos\theta -c \dot{\theta} \tag{2.5} Iθ¨=FPLsinθ−FNLcosθ−cθ˙(2.5)
将(2.2)和(2.4)分别代入(2.5)得出系统的另一个方程
( I + m L 2 ) θ ¨ + m L x ¨ + c θ ˙ = m g L θ (2.6) (I +mL^2) \ddot{\theta} +mL \ddot{x} +c\dot{\theta} =mgL\theta \tag{2.6} (I+mL2)θ¨+mLx¨+cθ˙=mgLθ(2.6)
将系统线性化令 s i n θ ≈ θ , c o s θ ≈ 1 , ( d θ d t ) 2 = 0 sin\theta \approx \theta, cos\theta \approx 1,(\frac{d\theta}{dt})^2 =0 sinθ≈θ,cosθ≈1,(dtdθ)2=0得出
{ F = ( M + m ) x ¨ + m L θ ¨ + b x ˙ m g L θ