齐物论——数学信号篇

齐物论——庄周梦蝶
“昔者,庄周梦为蝴蝶,栩栩然蝴蝶也。自喻适志与,不知周也。俄然觉,则蘧蘧然周也。不知周之梦为蝴蝶与,蝴蝶之梦为周与?周与蝴蝶,则必有分矣。此之谓物化。”
庄周梦蝶,庄子与蝴蝶必有分别?庄子不这样觉得,庄子觉得周与蝴蝶的关系,是物化,是泯灭了蝴蝶与庄周的差别,泯灭了天下万事万物的区别,最终达到人与自然的和谐一体,近乎道,见本心。
我今日之学数学,亦如庄周梦蝶,亦谓之物化!

今日份干货:

1. ∫ 0 ∞ s i n ( a x ) x d x &ThinSpace; = { π 2 &ThinSpace; a &gt; 0 − π 2 &ThinSpace; a &lt; 0 \int_0^\infty \frac{sin(ax)}{x}\mathrm{d}x\,= \begin{cases} \frac{\pi}{2}\,&amp; a &gt; 0 \\ -\frac{\pi}{2}\,&amp; a &lt; 0 \end{cases} 0xsin(ax)dx={2π2πa>0a<0
证明:
信号的方法:
∫ 0 ∞ s i n ( a x ) x d x &ThinSpace; = ∫ 0 ∞ s i n ( a x ) a x d ( a x ) &ThinSpace; = a ∫ 0 ∞ s i n ( a x ) a x d x &ThinSpace; . \int_0^\infty \frac{sin(ax)}{x}\mathrm{d}x\,=\int_0^\infty \frac{sin(ax)}{ax}\mathrm{d}(ax)\,=a\int_0^\infty \frac{sin(ax)}{ax}\mathrm{d}x\,. 0xsin(ax)dx=0axsin(ax)d(ax)=a0axsin(ax)dx.
S a ( x ) = s i n ( x ) x &ThinSpace; . Sa(x)=\frac{sin(x)}{x}\,. Sa(x)=xsin(x).
原 式 = a ∫ 0 ∞ S a ( a t ) d t &ThinSpace; . 原式=a\int_0^\infty Sa(at)\mathrm{d}t\,. =a0Sa(at)dt.
又门函数的的Fourier变换为
g ( t ) ↔ S a ( w 2 ) &ThinSpace; . g(t)\leftrightarrow Sa(\frac{w}{2})\,. g(t)Sa(2w).
其中 g ( t ) &ThinSpace; = { 1 , − 1 2 &lt; t &lt; 1 2 0 , t &lt; − 1 2 或 t &gt; 1 2 g(t)\,= \begin{cases} 1,&amp; -\frac{1}{2}&lt;t&lt;\frac{1}{2} \\ 0,&amp; t&lt;-\frac{1}{2}或 t&gt;\frac{1}{2} \end{cases} g(t)={1,0,21<t<21t<21t>21
则其反变换为
S a ( t 2 ) ↔ 2 π g ( − w ) &ThinSpace; . Sa(\frac{t}{2})\leftrightarrow 2\pi g(-w)\,. Sa(2t)2πg(w).
进一步有(门函数是偶函数)
S a ( a t ) ↔ π ∣ a ∣ g ( 2 w a ) &ThinSpace; . Sa(at)\leftrightarrow \frac{\pi}{|a|}g(\frac{2w}{a})\,. Sa(at)aπg(a2w).
原 式 = a ∫ 0 ∞ S a ( a t ) e − j w t d t &ThinSpace; ∣ w = 0 = a 2 ∫ − ∞ ∞ S a ( a t ) e − j w t d t &ThinSpace; ∣ w = 0 &ThinSpace; = a 2 π ∣ a ∣ g ( 2 w a ) ∣ w = 0 &ThinSpace; = a 2 π ∣ a ∣ g ( 0 ) &ThinSpace; = a π 2 ∣ a ∣ &ThinSpace; . 原式=a\int_0^\infty Sa(at)e^{-jwt}\mathrm{d}t\,|_{w=0} =\frac{a}{2}\int_{-\infty}^\infty Sa(at)e^{-jwt}\mathrm{d}t\,|_{w=0}\,\\=\frac{a}{2}\frac{\pi}{|a|}g(\frac{2w}{a})|_{w=0}\,=\frac{a}{2}\frac{\pi}{|a|}g(0)\,=\frac{a\pi}{2|a|}\,. =a0Sa(at)ejwtdtw=0=2aSa(at)ejwtdtw=0=2aaπg(a2w)w=0=2aaπg(0)=2aaπ.
∫ 0 ∞ s i n ( a x ) x d x &ThinSpace; = { π 2 &ThinSpace; a &gt; 0 − π 2 &ThinSpace; a &lt; 0 \int_0^\infty \frac{sin(ax)}{x}\mathrm{d}x\,= \begin{cases} \frac{\pi}{2}\,&amp; a &gt; 0 \\ -\frac{\pi}{2}\,&amp; a &lt;0 \end{cases} 0xsin(ax)dx={2π2πa>0a<0

数学的方法将会在明天揭晓
((。・∀・)ノ实际上是来不及写了,因为数学符号好难写)。

2.CSDN的数学符号
所有的数学符号都要写在$$之间或者$$$$$之间\

积分号 ∫ \int 的LaTeX的符号是 \int

分式的表达 b a \frac{b}{a} ab的符号是 \frac{分子}{分母}

分段函数的表达 ∫ 0 ∞ s i n ( a x ) x d x &ThinSpace; = { π 2 &ThinSpace; a &gt; 0 − π 2 &ThinSpace; a &lt; 0 \int_0^\infty \frac{sin(ax)}{x}\mathrm{d}x\,= \begin{cases} \frac{\pi}{2}\,&amp; a &gt; 0 \\ -\frac{\pi}{2}\,&amp; a &lt;0 \end{cases} 0xsin(ax)dx={2π2πa>0a<0其格式较为复杂
具体有开始部分 \begin{cases},结束部分 \end{cases}
而分段函数的内容写在这两段之间,其中条件与函数值之间用&连接,
不同段间\\连接

积分上下限 ∫ 0 ∞ \int_0^\infty 0,其中0是下限, ∞ \infty 是上限,下限是下标用_连接,上限是上标用^连接,该积分式代码 ∫ 0 ∞ \int_0^\infty 0如下: \int_0^\infty

3.Matlab解二元三次方程组
待解方程组:
( x − a 1 ) 2 + ( y − b 1 ) 2 + ( z − c 1 ) 2 = d 1 2 ( x − a 2 ) 2 + ( y − b 2 ) 2 + ( z − c 2 ) 2 = d 2 2 ( x − a 3 ) 2 + ( y − b 3 ) 2 + ( z − c 3 ) 2 = d 3 2 (x-a_1)^2+(y-b_1)^2+(z-c_1)^2=d_1^2\\ (x-a_2)^2+(y-b_2)^2+(z-c_2)^2=d_2^2\\ (x-a_3)^2+(y-b_3)^2+(z-c_3)^2=d_3^2\\ (xa1)2+(yb1)2+(zc1)2=d12(xa2)2+(yb2)2+(zc2)2=d22(xa3)2+(yb3)2+(zc3)2=d32
附Matlab源代码:

//
syms x y z a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3 ;
eqns=[
(x-a1)^2 +(y-b1)^2 +(z-c1)^2 -((x-a2)^2 +(y-b2)^2 +(z-c2)^2) ==d1^2- d2^2,
(x-a2)^2 +(y-b2)^2 +(z-c2)^2 -((x-a3)^2 +(y-b3)^2 +(z-c3)^2) ==d2^2- d3^2,
(x-a3)^2+ (y-b3)^2 +(z-c3)^2 -((x-a1)^2 +(y-b1)^2 +(z-c1)^2) ==d3^2- d1^2
];
[A,b] = equationsToMatrix(eqns,vars);
solutions1=b\A;
solutions2=inv(A)*b;

//
然而存在det(A)=0的问题,不知该如何解决呀!

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值