数字信号处理笔记(时域离散信号和系统)

文章介绍了离散时间信号的基本概念,包括通过等间隔采样模拟信号得到离散序列的过程,以及常见的序列类型如单位采样序列、单位阶跃序列、矩形序列、指数序列和正弦序列。此外,文章还讨论了离散时间系统的性质,如线性、时不变性、因果性和稳定性,并介绍了线性卷积和线性常系数差分方程在描述系统行为中的应用。最后,提到了模拟信号的数字处理方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言


一、离散时间信号

1. 基本概念

  对模拟信号 x a ( t ) x_a(t) xa(t)进行等间隔采样,采样间隔为T,采样点对应的时刻为 t = n T t=nT t=nT( n取整数),得到 [采样的数学模型]
x a ( t ) ∣ n T = x a ( n T ) − ∞ < n < + ∞ \begin{aligned} x_a(t)|_{nT} = x_a(nT) -\infty < n < +\infty \end{aligned} xa(t)nT=xa(nT)<n<+不同的n值 x a ( n T ) x_a(nT) xa(nT)形成一个有序的数字序列: … , x a ( − T ) 、 x a ( 0 ) 、 x a ( T ) , … , …, x_a(-T)、x_a(0)、x_a(T),…, ,xa(T)xa(0)xa(T), 就是 时域离散信号序列

注意:

  • 实际中,数字序列值按顺序放在存贮器中, n T nT nT 仅代表前后顺序,故信号(或序列)简写为 x ( n ) x(n) x(n)
  • 对具体信号, x ( n ) x(n) x(n) 也代表第n个序列值。
  • n n n 取整数,非整数时无定义;而在n时刻序列的取值等于信号的采样值,即 x ( n ) = x a ( n T ) − ∞ < n < + ∞ \begin{aligned} x(n) = x_a(nT) -\infty < n < +\infty \end{aligned} x(n)=xa(nT)<n<+

2. 离散时间信号的时域表示

  1. 枚举法
  2. 公式 (解析式)法
  3. 图解法

3. 常用序列

(1)单位采样序列(单位脉冲序列)

  • δ ( t ) \delta(t) δ(t)区别:模拟信号和系统中的单位冲激函数 δ ( t ) δ(t) δ(t) t = 0 t=0 t=0时取值无穷大, t ≠ 0 t≠0 t=0时取值为零,对时间 t t t的积分为1。
  • 单位采样序列作用:用其的移位和加权表示任意的离散时间序列

(2)单位阶跃序列

  • δ ( n ) δ(n) δ(n) u ( n ) u(n) u(n)之间的关系: δ ( n ) = u ( n ) − u ( n − 1 ) δ(n) =u(n)-u(n-1) δ(n)=u(n)u(n1)(差分)
  • δ ( n ) δ(n) δ(n) u ( n ) u(n) u(n)之间的关系: u ( n ) = ∑ k = 0 + ∞ δ ( n − k ) u(n) = \sum_{k=0}^{+\infty}\delta(n-k) u(n)=k=0+δ(nk)

(3)矩形序列

(4)实指数序列

(5)正弦序列

  • 因为在数值上,序列值与采样信号值相等,因此得到数字频率 ω 与模拟角频率Ω之间的关系为 ω = Ω T ω=ΩT ω=ΩT
  • 上式具有普遍意义,它表示凡是由模拟信号采样得到的序列,模拟角频率Ω与序列的数字域频率 ω ω ω 成线性关系。

(6)复指数序列

(7)周期序列

如果对所有n存在一个最小的正整数N,使下面等式成立:
x ( n ) = x ( n + N ) , − ∞ < n < ∞ \begin{aligned} x(n)=x(n+N), -∞<n<∞ \end{aligned} x(n)=x(n+N),<n<则称序列x(n)为周期性序列,周期为N(N为整数)。

  • 对一般的正弦序列而言: x ( n ) = A s i n ( ω 0 n + φ ) x(n)=Asin(ω_0 n+φ) x(n)=Asin(ω0n+φ),如果要求该序列为周期序列,则要求满足: N = 2 π ω 0 k N=\frac{2π}{ω_0}k N=ω02πk。式中k与N均取整数,且k的取值要保证N是最小的正整数。满足这些条件,正弦序列才是以N为周期的周期序列。
  • 具体来说正弦序列有以下三种情况:
    • 2 π / ω 0 2π/ω_0 2π/ω0为整数时,k=1,正弦序列是以 2 π / ω 0 2π/ω_0 2π/ω0为周期的周期序列。
    • 2 π / ω 0 2π/ ω_0 2π/ω0不是整数,而是一个有理数。 N = ( 2 π / ω 0 ) k = P / Q ∗ Q = P N= (2π/ω0)k = P/Q*Q=P N=(2π/ω0)k=P/QQ=P,即正弦序列是以 P P P为周期的周期序列。
    • 2 π / ω 0 2π/ω_0 2π/ω0 是无理数,此时的正弦序列不是周期序列
  • 正弦信号或复指数信号是周期信号,但正弦序列或复指数序列不一定是周期序列

(4)序列的运算–乘法、加法、移位、翻转及尺度变换

二、离散时间系统

性质:线性或非线性、时变或时不变、因果或非因果、稳定或不稳定

(1)线性系统

(2)时不变系统

如果系统对输入信号的运算关系 T [ ⋅ ] T[·] T[] 在整个运算过程中不随时间变化,或者说系统对于输入信号的响应与信号加于系统的时间无关,则这种系统称为时不变系统 (理解为:不时变),表示如下:
I F : y ( n ) = T [ x ( n ) ] ,且 T [ x ( n − n 0 ) ] = y ( n − n 0 ) \begin{aligned} IF: y(n)=T[x(n)],且 T[x(n-n0)] = y(n-n0) \end{aligned} IFy(n)=T[x(n)],且T[x(nn0)]=y(nn0) T H E N : 系统是非时变的! \begin{aligned} THEN : 系统是非时变的! \end{aligned} THEN:系统是非时变的!

  • 证明方法:分别对 y ( n ) y(n) y(n) T [ x ( n ) ] T[x(n)] T[x(n)] 的自变量进行时延 n 0 n_0 n0,并比较二者是否相同
  • 注意 y ( n ) y(n) y(n)的自变量是 n n n T [ x ( n ) ] T[x(n)] T[x(n)]的自变量是 x ( n ) x(n) x(n)

(3)系统的因果性

(4)系统的稳定性

三、离散系统的描述

1. 线性卷积

  • 式中的符号*代表线性卷积运算,*与系统之间存在一一对应的关系;
  • 上式表示LTI系统的输出等于输入序列和该系统的单位脉冲响应的卷积;
  • 只要知道系统的单位脉冲响应,按照上式,对于任意输入x(n)都可以求出系统的输出。

线性卷积计算的方法:

  1. 解析方法
  2. 图解方法
  3. 不进位乘法
  4. 矩阵表示方法
  5. Z变换方法

2. 线性常系数差分方程表示LTI系统

(1)基本概念

描述一个系统,可以不管系统内部的结构如何,将系统看成一个黑盒子,只描述或者研究系统输出和输入之间的关系,这种方法称为输入输出描述法

  • 模拟系统:由微分方程描述系统输出输入之间关系;
  • 离散时间系统:用差分方程描述系统输出输入之间关系;
  • 线性时不变系统(LTI):用线性常系数差分方程描述系统输出输入之间关系。

(2)线性常系数差分方程的求解

已知系统的输入序列,通过求解差分方程可以求出输出序列。求解差分方程的基本方法有以下三种:

  1. 变换域方法:Z变换。
  2. 时域解法
    • 经典解法:闭合形式的解(齐次解加特解),应用少;
    • 递推解法:数值解;

已知:输入序列和N个初始条件(N为系统阶数)
求解:n时刻的输出,并递推出n+1时刻的输出

  • 结论1:差分方程本身并不能确定该系统是因果还是非因果系统,还需要用初始条件进行限制。(因果性:在n<0 时,没有输入信号,输出只能为零)
  • 结论2:线性常系数差分方程描述的系统并不一定是线性时不变系统,这和系统的初始状态有关。

总结:即差分方程本身不能够确定系统的因果性和时不变性。

采用线性常系数差分方程描述系统时,如果没有附加的约束条件,则它不能唯一的确定一个系统的输入和输出关系,也不能保证系统一定是线性时不变系统。

约定:凡用线性常系数差分方程所描述的系统都是指线性时不变系统

四、模拟信号数字处理方法

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值