水雷——屯

屯【卦三】水雷屯
屯,其卦象为震下坎上
(⊙﹏⊙∥,我不会输入那个卦象,有机会去学习怎么输入,然后给大家展示)
\qquad 屯,元亨,利贞,勿用有攸往,利建侯。
\qquad 《彖》曰:屯,刚柔始交而难生。动乎险中,大亨贞。雷雨之动满盈,天造草昧,宜建侯而不宁。
\qquad 《象》曰:“即鹿无虞”,以从禽也。君子舍之,往吝穷也。
\qquad 屯卦,让我想起来,金庸笔下的一个非常浪漫、非常爱自由的人物——令狐冲。我非常地喜欢他,爱他的浪漫不羁、热爱自由、真性情、不为世俗所困。他在《笑傲江湖》全篇之中,始终是保持着一颗赤子之心,绝对不向所谓的“强者”,如余沧海、任我行之流,屈膝谄媚。但是在小说开始时,他有傲骨、有智慧,但没有能力,勉强成功地英雄救美,但是自己也身负重伤,命悬一线。而后来,他虽然是受到委屈,去思过崖面壁思过,看上去是一段非常煎熬、非常难受的时期,但也是在这段时间中,他发现了华山石洞地秘密,遇到一样潇洒不羁地风清扬,并得其真传——独孤九剑。尽管令狐冲他后来的种种遭遇,确实也一路坎坷,但是相比于他开始的三流水准(武功和见识阅历),他已经能够游刃有余的处理解决各类难题了。(当然,他的情感问题是一件非常棘手的,并且具有扑朔迷离的味道,我只能感慨,金庸真的是大智慧。以后有机会和大家聊一聊他的情感生涯)
\qquad 我想通过令狐冲的遭际说什么呢?当下,可能确实有诸多不顺心之事,抑或是看不惯之人,我们可以选择去“隐居”,不过现在已经2019了,比不了小说中的时代,做一个完全脱节社会的人,不现实也不可能。我想体面地活着,同时也不想处处受他人掣肘,我向往与世隔绝地生活,所以,现在我得苦练七十二技了。学习本身确实蛮痛苦的,不过换个角度来说,比如我喜欢看看《易经》、《庄子》,如果我不学习,我不就看不懂了吗?所以我们把学习当作手段,把兴趣爱好当作学习服务的对象。啊!这样一想,不禁觉得胸中的积郁之气,便大图为快啊!
\qquad 所以,我亲爱的朋友,如果你这会儿依旧在拼命地往上走,拼命地学习,不要“畏途巉岩不可攀”,假使真的遇到了很棘手的问题,不妨说出来,或是找个小说来寄托一下情感,宣泄一下情绪。让我们再想想令狐冲在思过崖上的那段日子吧,“若无漫漫长夜,何来熠熠闪光”,可能我们也在思过崖上,只是风清扬觉得还不是来见我们的时候,所以千万不要放弃哦!d=====( ̄▽ ̄*)b

附一张海中集训班黑板报:
在这里插入图片描述

1.求解抽样函数广义积分的数学方法
∫ 0 ∞ s i n ( a x ) x d x &ThinSpace; = { π 2 &ThinSpace; a &gt; 0 − π 2 &ThinSpace; a &lt; 0 \int_0^\infty \frac{sin(ax)}{x}\mathrm{d}x\,= \begin{cases} \frac{\pi}{2}\,&amp; a &gt; 0 \\ -\frac{\pi}{2}\,&amp; a &lt; 0 \end{cases} 0xsin(ax)dx={2π2πa>0a<0
证明:
∫ 0 ∞ s i n ( a x ) x d x &ThinSpace; = ∫ 0 ∞ s i n ( a x ) a x d ( a x ) &ThinSpace;&ThinSpace; . \int_0^\infty \frac{sin(ax)}{x}\mathrm{d}x\,=\int_0^\infty \frac{sin(ax)}{ax}\mathrm{d}(ax)\,\,. 0xsin(ax)dx=0axsin(ax)d(ax).
t = a x t=ax t=ax,
(1)当 a &gt; 0 a&gt;0 a>0时, 原 式 = ∫ 0 ∞ s i n t t d t &ThinSpace;&ThinSpace; = ∫ 0 ∞ ( e − a t s i n t t ) ∣ ∞ 0 d t &ThinSpace; = ∫ 0 ∞ ( ∫ 0 ∞ e − a t s i n t d a ) d t = ∫ 0 ∞ ( ∫ 0 ∞ e − a t s i n t d t ) d a ( 1.1 ) 原式=\int_0^\infty\frac{sint}{t}\mathrm{d}t\,\,=\int_0^\infty (e^{-at}\frac{sint}{t})\big|^{0}_{\infty}\mathrm{d}t \,=\int_0^\infty(\int_0^\infty e^{-at}sint\mathrm{d}a)\mathrm{d}t\\=\int_0^\infty(\int_0^\infty e^{-at}sint\mathrm{d}t)\mathrm{d}a\quad (1.1) =0tsintdt=0(eattsint)0dt=0(0eatsintda)dt=0(0eatsintdt)da(1.1)
此处我们单独计算 ∫ 0 ∞ e − a t s i n t d t \int_0^\infty e^{-at}sint\mathrm{d}t 0eatsintdt
∫ 0 ∞ e − a t s i n t d t &ThinSpace; = ∫ 0 ∞ s i n t − a d e − a t &ThinSpace; = e − a t s i n t − a ∣ 0 ∞ − ∫ 0 ∞ e − a t − a d s i n t &ThinSpace; = 0 − 0 + ∫ 0 ∞ e − a t c o s t a d t &ThinSpace; = ∫ 0 ∞ c o s t − a 2 d e − a t &ThinSpace; = e − a t c o s t − a 2 ∣ 0 ∞ − ∫ 0 ∞ e − a t − a 2 d c o s t &ThinSpace; = 0 − 1 − a 2 + ∫ 0 ∞ e − a t s i n t a 2 d t &ThinSpace; = 1 a 2 + 1 a 2 ∫ 0 ∞ e − a t s i n t d t &ThinSpace; \int_0^\infty e^{-at}sint\mathrm{d}t\,=\int_0^\infty\frac{sint}{-a}\mathrm{d}e^{-at}\,=\frac{e^{-at}sint}{-a}\bigg|_0^\infty-\int_0^\infty\frac{e^{-at}}{-a}\mathrm{d}sint\,\\ \qquad =0-0+\int_0^\infty\frac{e^{-at}cost}{a}\mathrm{d}t\,=\int_0^\infty\frac{cost}{-a^2}\mathrm{d}e^{-at}\,= \frac{e^{-at}cost}{-a^2}\bigg|_0^\infty-\int_0^\infty\frac{e^{-at}}{-a^2}\mathrm{d}cost\,\\ =0-\frac{1}{-a^2}+\int_0^\infty\frac{e^{-at}sint}{a^2}\mathrm{d}t\,=\frac{1}{a^2}+\frac{1}{a^2}\int_0^\infty e^{-at}sint\mathrm{d}t\, 0eatsintdt=0asintdeat=aeatsint00aeatdsint=00+0aeatcostdt=0a2costdeat=a2eatcost00a2eatdcost=0a21+0a2eatsintdt=a21+a210eatsintdt

∫ 0 ∞ e − a t s i n t d t &ThinSpace; = 1 a 2 1 + 1 a 2 = 1 1 + a 2 &ThinSpace; a &gt; 0 \int_0^\infty e^{-at}sint\mathrm{d}t\,=\frac{\frac{1}{a^2}}{1+\frac{1}{a^2}}=\frac{1}{1+a^2}\,\qquad a&gt;0 0eatsintdt=1+a21a21=1+a21a>0
则式 ( 1.1 ) (1.1) 1.1的值为 ∫ 0 ∞ 1 1 + a 2 d a = a r c t a n a ∣ 0 ∞ = π 2 \int_0^\infty\frac{1}{1+a^2}\mathrm{d}a=arctana\big|_0^\infty=\frac{\pi}{2} 01+a21da=arctana0=2π
故当 a &gt; 0 a&gt;0 a>0
∫ 0 ∞ s i n ( a x ) x d x &ThinSpace; = π 2 \int_0^\infty \frac{sin(ax)}{x}\mathrm{d}x\,= \frac{\pi}{2} 0xsin(ax)dx=2π
(2)当 a &lt; 0 a&lt;0 a<0时,与(1)同样,可以得到
∫ 0 ∞ s i n ( a x ) x d x &ThinSpace; = − π 2 \int_0^\infty \frac{sin(ax)}{x}\mathrm{d}x\,= -\frac{\pi}{2} 0xsin(ax)dx=2π
具体过程读者可以仿照(1),自己尝试证明。

综合(1)和(2),则
∫ 0 ∞ s i n ( a x ) x d x &ThinSpace; = { π 2 &ThinSpace; a &gt; 0 − π 2 &ThinSpace; a &lt; 0 \int_0^\infty \frac{sin(ax)}{x}\mathrm{d}x\,= \begin{cases} \frac{\pi}{2}\,&amp; a &gt; 0 \\ -\frac{\pi}{2}\,&amp; a &lt; 0 \end{cases} 0xsin(ax)dx={2π2πa>0a<0
以下给出上面证明部分的LaTeX源代码:

$$
\int_0^\infty \frac{sin(ax)}{x}\mathrm{d}x\,= \begin{cases}  
 \frac{\pi}{2}\,& a > 0 \\
-\frac{\pi}{2}\,& a < 0
\end{cases}
$$
证明:
$$\int_0^\infty \frac{sin(ax)}{x}\mathrm{d}x\,=\int_0^\infty \frac{sin(ax)}{ax}\mathrm{d}(ax)\,\,. $$
令$t=ax$,
(1)当$a>0$时,$$
原式=\int_0^\infty\frac{sint}{t}\mathrm{d}t\,\,=\int_0^\infty (e^{-at}\frac{sint}{t})\big|^{0}_{\infty}\mathrm{d}t \,=\int_0^\infty(\int_0^\infty e^{-at}sint\mathrm{d}a)\mathrm{d}t\\=\int_0^\infty(\int_0^\infty e^{-at}sint\mathrm{d}t)\mathrm{d}a\quad (1.1)$$
此处我们单独计算$\int_0^\infty e^{-at}sint\mathrm{d}t$
$$
\int_0^\infty e^{-at}sint\mathrm{d}t\,=\int_0^\infty\frac{sint}{-a}\mathrm{d}e^{-at}\,=\frac{e^{-at}sint}{-a}\bigg|_0^\infty-\int_0^\infty\frac{e^{-at}}{-a}\mathrm{d}sint\,\\
\qquad =0-0+\int_0^\infty\frac{e^{-at}cost}{a}\mathrm{d}t\,=\int_0^\infty\frac{cost}{-a^2}\mathrm{d}e^{-at}\,= \frac{e^{-at}cost}{-a^2}\bigg|_0^\infty-\int_0^\infty\frac{e^{-at}}{-a^2}\mathrm{d}cost\,\\
=0-\frac{1}{-a^2}+\int_0^\infty\frac{e^{-at}sint}{a^2}\mathrm{d}t\,=\frac{1}{a^2}+\frac{1}{a^2}\int_0^\infty e^{-at}sint\mathrm{d}t\,
$$
即
$$
\int_0^\infty e^{-at}sint\mathrm{d}t\,=\frac{\frac{1}{a^2}}{1+\frac{1}{a^2}}=\frac{1}{1+a^2}\,\qquad a>0
$$
则式$(1.1)$的值为$$\int_0^\infty\frac{1}{1+a^2}\mathrm{d}a=arctana\big|_0^\infty=\frac{\pi}{2}$$
故当$a>0$时
$$\int_0^\infty \frac{sin(ax)}{x}\mathrm{d}x\,= \frac{\pi}{2}$$

2.继昨日求解球面方程交点的方法
{ ( x − a 1 ) 2 + ( y − b 1 ) 2 + ( z − c 1 ) 2 = d 1 2 &ThinSpace; ( 2.1 ) ( x − a 2 ) 2 + ( y − b 2 ) 2 + ( z − c 2 ) 2 = d 2 2 &ThinSpace; ( 2.2 ) ( x − a 3 ) 2 + ( y − b 3 ) 2 + ( z − c 3 ) 2 = d 3 2 &ThinSpace; ( 2.3 ) \begin{cases} (x-a_1)^2+(y-b_1)^2+(z-c_1)^2=d_1^2\, \quad(2.1)\\ (x-a_2)^2+(y-b_2)^2+(z-c_2)^2=d_2^2\,\quad(2.2)\\ (x-a_3)^2+(y-b_3)^2+(z-c_3)^2=d_3^2\,\quad(2.3) \end{cases} (xa1)2+(yb1)2+(zc1)2=d12(2.1)(xa2)2+(yb2)2+(zc2)2=d22(2.2)(xa3)2+(yb3)2+(zc3)2=d32(2.3)首先对该方程组进行加减消元(2.1)-(2.2),(2.2)-(2.3)
{ ( 2 a 2 − 2 a 1 ) x + ( 2 b 2 − 2 b 1 ) y + ( 2 c 2 − 2 c 1 ) z = d 1 2 − d 2 2 + a 2 2 + b 2 2 + c 2 2 − a 1 2 − b 1 2 − c 1 2 &ThinSpace; ( 2.4 ) ( 2 a 3 − 2 a 2 ) x + ( 2 b 3 − 2 b 2 ) y + ( 2 c 3 − 2 c 2 ) z = d 2 2 − d 3 2 + a 3 2 + b 3 2 + c 3 2 − a 2 2 − b 2 2 − c 2 2 &ThinSpace; ( 2.5 ) \begin{cases} (2a_2-2a_1)x+(2b_2-2b_1)y+(2c_2-2c_1)z=d_1^2-d_2^2+a_2^2+b_2^2+c_2^2-a_1^2-b_1^2-c_1^2\, \quad(2.4)\\ (2a_3-2a_2)x+(2b_3-2b_2)y+(2c_3-2c_2)z=d_2^2-d_3^2+a_3^2+b_3^2+c_3^2-a_2^2-b_2^2-c_2^2\, \quad(2.5) \end{cases} {(2a22a1)x+(2b22b1)y+(2c22c1)z=d12d22+a22+b22+c22a12b12c12(2.4)(2a32a2)x+(2b32b2)y+(2c32c2)z=d22d32+a32+b32+c32a22b22c22(2.5)
可以解出
{ y = ( ( 2 c 2 − 2 c 1 ) ( 2 a 3 − 2 a 2 ) − ( 2 c 3 − 2 c 2 ) ( 2 a 2 − 2 a 1 ) ) x + ( d 1 2 − d 2 2 + a 2 2 + b 2 2 + c 2 2 − a 1 2 − b 1 2 − c 1 2 ) ( 2 c 3 − 2 c 2 ) − ( d 2 2 − d 3 2 + a 3 2 + b 3 2 + c 3 2 − a 2 2 − b 2 2 − c 2 2 ) ( 2 c 2 − 2 c 1 ) ( 2 b 3 − 2 b 2 ) ( 2 c 2 − 2 c 1 ) − ( 2 b 2 − 2 b 1 ) ( 2 c 3 − 2 c 2 ) &ThinSpace; . z = ( ( 2 b 2 − 2 b 1 ) ( 2 a 3 − 2 a 2 ) − ( 2 b 3 − 2 b 2 ) ( 2 a 2 − 2 a 1 ) ) x + ( d 1 2 − d 2 2 + a 2 2 + b 2 2 + c 2 2 − a 1 2 − b 1 2 − c 1 2 ) ( 2 a 3 − 2 a 2 ) − ( d 2 2 − d 3 2 + a 3 2 + b 3 2 + c 3 2 − a 2 2 − b 2 2 − c 2 2 ) ( 2 a 2 − 2 a 1 ) ( 2 b 3 − 2 b 2 ) ( 2 c 2 − 2 c 1 ) − ( 2 b 2 − 2 b 1 ) ( 2 c 3 − 2 c 2 ) &ThinSpace; . \begin{cases} y=\frac{\bigg((2c_2-2c_1)(2a_3-2a_2)-(2c_3-2c_2)(2a_2-2a_1)\bigg)x+(d_1^2-d_2^2+a_2^2+b_2^2+c_2^2-a_1^2-b_1^2-c_1^2)(2c_3-2c_2)-(d_2^2-d_3^2+a_3^2+b_3^2+c_3^2-a_2^2-b_2^2-c_2^2)(2c_2-2c_1)}{(2b_3-2b_2)(2c_2-2c_1)-(2b_2-2b_1)(2c_3-2c_2)}\,.\\ \\ z=\frac{\bigg((2b_2-2b_1)(2a_3-2a_2)-(2b_3-2b_2)(2a_2-2a_1)\bigg)x+(d_1^2-d_2^2+a_2^2+b_2^2+c_2^2-a_1^2-b_1^2-c_1^2)(2a_3-2a_2)-(d_2^2-d_3^2+a_3^2+b_3^2+c_3^2-a_2^2-b_2^2-c_2^2)(2a_2-2a_1)}{(2b_3-2b_2)(2c_2-2c_1)-(2b_2-2b_1)(2c_3-2c_2)}\,. \end{cases} y=(2b32b2)(2c22c1)(2b22b1)(2c32c2)((2c22c1)(2a32a2)(2c32c2)(2a22a1))x+(d12d22+a22+b22+c22a12b12c12)(2c32c2)(d22d32+a32+b32+c32a22b22c22)(2c22c1).z=(2b32b2)(2c22c1)(2b22b1)(2c32c2)((2b22b1)(2a32a2)(2b32b2)(2a22a1))x+(d12d22+a22+b22+c22a12b12c12)(2a32a2)(d22d32+a32+b32+c32a22b22c22)(2a22a1).
y y y z z z回代到 ( 2.1 ) (2.1) 2.1式中,解下面这个关于 x x x的二元一次方程
( x − a 1 ) 2 + ( y − b 1 ) 2 + ( z − c 1 ) 2 = d 1 2 &ThinSpace; (x-a_1)^2+(y-b_1)^2+(z-c_1)^2=d_1^2\, (xa1)2+(yb1)2+(zc1)2=d12
进而求得 x , y , z x,y,z x,y,z的值。

另附Matlab源代码如下:

syms x y z a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3 m n;
eqns=[(x-a1)^2+(y-b1)^2+(z-c1)^2==d1^2,(x-a2)^2+(y-b2)^2+(z-c2)^2==d2^2,(x-a3)^2+(y-b3)^2+(z-c3)^2==d3^2];
eqn=[(y-b1)^2+(z-c1)^2-(y-b2)^2-(z-c2)^2==d1^2-d2^2+(x-a2)^2-(x-a1)^2,(y-b2)^2+(z-c2)^2-(y-b3)^2-(z-c3)^2==d2^2-d3^2+(x-a3)^2-(x-a2)^2];
var=[y,z];
[E,g]=equationsToMatrix(eqn,var);
Solution=inv(E)*g; 
soly=Solution(1,:);
solz=Solution(2,:);
f(x)=(x-a1)^2+(soly-b1)^2+(solz-c1)^2-d1^2;
t=solve(f(x),x);
Y(x)=soly;
Z(x)=solz;
r=Y(t);
s=Z(t);
Output=[t;s;r];

关于此代码说明,由于是含有9个参数的二元一次方程组,因此该解的输出受到Matlab自身输出长度的限制,存在截断问题,另外Matlab关于非齐次方程似乎没有通式或是函数直接调用,并且根据线性代数的知识,我们要知道m个n次的方程组,在消去最高次项后,真正有效的n-1次方程数目只有m-1个,所以该例子是无法直接用线性方程的知识来求解的!

非常感谢陆同学的帮助,在她的引导下,有一个更一般性的算法。
其源代码如下:

syms x y z x1 x2 x3 y1 y2 y3 z1 z2 z3 a11 a12 a13 a21 a22 a23 a31 a32 a33 d1 d2 d3;
B=[x1,y1,z1;x2,y2,z2;x3,y3,z3];
A=[a11,a12,a13;a21,a22,a23;a31,a32,a33];
C=[x,y,z;x,y,z;x,y,z];
M1=C-B;
M2=M1.*M1;
M3=A*transpose(M2);
b=[d1 ;d2 ;d3];
eqn0=M3-b;
eqn=transpose(eqn0(:,1));
vars=[x,y,z];
[solx ,soly ,solz]=solve(eqn,vars);
sol=[solx(1,:),solx(2,:);soly(1,:),soly(2,:);solz(1,:),solz(2,:)];

3.傅里叶 ( F o u r i e r ) (Fourier) Fourier变换补充:
昨天我写了一个很简单粗暴的式子:
S a ( t 2 ) ↔ 2 π g ( − ω ) &ThinSpace; . Sa(\frac{t}{2})\leftrightarrow 2\pi g(-\omega)\,. Sa(2t)2πg(ω).
这个就是 ( F o u r i e r ) (Fourier) Fourier
f ( t ) ↔ F ( j ω ) &ThinSpace; . f(t)\leftrightarrow F(j\omega)\,. f(t)F(jω).
( F o u r i e r ) (Fourier) Fourier变换的定义式如下:
F ( j ω ) = ∫ − ∞ + ∞ f ( t ) e − j ω t d t &ThinSpace; . F(j\omega)=\int_{-\infty}^{+\infty}f(t)e^{-j\omega t}\mathrm{d}t \,. F(jω)=+f(t)ejωtdt.
即单纯的做一个定义,类似于 Γ ( x ) \Gamma(x) Γ(x) B ( x ) \Beta(x) B(x)一样的。
其具体意义到底是什么呢?今天已经写了这么久呢,就明天再说吧!

((〃 ̄︶ ̄)人( ̄︶ ̄〃)其实是猴哥?忘记了傅里叶变换是怎么来,容我去复习一天,明天再来和大家分享?)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值