Python DataFrame 中 reindex与reset_index的区别

本文介绍了Pandas中DataFrame的reset_index和reindex方法。reset_index用于重置数据框的索引,通常在合并或筛选后的数据索引混乱时使用,可选择性地删除原有索引。reindex则允许你改变数据框的列顺序,如果指定的列不存在,则相应位置填充NaN。这两个方法是数据清洗和整理过程中的常用工具。
摘要由CSDN通过智能技术生成

用到了reset_index,突然看到还有个reindex,查了下区别,记录下。

reindex :

重新设置df中的index,注意这个index并不是指 每列之前的那个index,指的是每个列名。

 例如图一是 合并之后的一个 df,可以看到他的index是乱的,这时候我们调用

result2 = result.reindex(columns=['A','C'])

 就得到了图二,因为原df中没有C这个列,所以reindex之后C列的值都为Nan了

reset_index:

意思是合并之后或者条件选择之后的df index往往都是混乱的,这时候调用这个重新生成顺序的index

        当我们合并了两个df之后,就会发现他们的index是乱的,这个时候就可以调用reset_index,这里面还可以传入图中这几个参数,例如设置drop=True 就可以舍弃原来的index 重新设置index

图一仍然是合并之后的数据,图二是调用

result2= result.reset_index()

 而图三则是调用

result2 = result.reset_index(drop=True)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值