QSC和LTC以及PWL

Quadrature Spatial Correction(QSC)Linear To Companding(LTC)——在高端图像传感器(尤其是 Sony 的 IMX 系列,比如 IMX586、IMX789、IMX989 等)中是非常重要的内部校准和图像优化机制。它们通常用于提升成像质量、修复像素非均匀性、提升 HDR 精度等。


1. Quadrature Spatial Correction(QSC)

基本定义:

QSC 是 Sony 高端图像传感器中的一种空间校正机制,主要用于 修复像素阵列中的空间非均匀性(spatial non-uniformity),尤其在 QBC(Quad Bayer Coding) 架构下使用。


适用背景:

在像 IMX586、IMX789 这类 Quad Bayer 传感器中,传感器像素是以 2x2 的 quad 单元组织的。它们用于:

  • 高像素合成(像素 binning)

  • HDR(多曝光)拼接

  • 多通道对焦(例如 PDAF)

QSC 的作用:

由于 fabrication 工艺问题,不同位置的像素或像素组合可能响应不一致。QSC 的作用是:

  • 校正每个 2x2 像素单元 的响应差异

  • 消除空间上的光学或电学非均匀性(比如:电荷转移效率不一致)

  • 修复 binning 后的图像边缘错位、细节模糊

数据来源:

QSC 校准数据通常保存在 OTP(One-Time Programmable)ROMEEPROM 中,在 sensor 初始化时通过 I2C 读取并写入 sensor 寄存器。


2. Linear To Companding(LTC)

基本定义:

LTC 是一种将图像传感器采集的 线性响应信号 压缩成 更宽动态范围格式 的机制,常用于 HDR(高动态范围) 成像场景。


背景:

在传感器输出中,原始的模拟电压转换为数字值是线性的。但人眼对亮度的感知是 对数的。而且,在 HDR 模式下,线性数据范围太大,会:

  • 超出 sensor 的比特深度

  • 难以有效表达亮部细节

LTC 的作用:

LTC 引入一种 非线性映射曲线(类似对数),把线性输出压缩为 companded 输出:

  • 暗部拉伸:让低亮区域更加明显

  • 亮部压缩:防止高光溢出

  • 保留更多的动态范围信息

这种转换是 sensor 内部通过 LUT(查找表)或内建函数完成的。

应用在:

  • In-sensor HDR(传感器级别的多曝光融合)

  • 视频流的动态压缩(例如直接输出 10-bit companded 数据)

  • AI 推理前的 tone-mapping 预处理


总结对比:

技术名QSC(Quadrature Spatial Correction)LTC(Linear to Companding)
功能修正像素空间响应差异压缩线性图像为非线性(对数)格式
应用Quad Bayer、PDAF、像素 binningHDR、ISP、压缩格式输出
数据来源EEPROM / OTP 校准数据内建 LUT,部分可编程
原因物理阵列差异感知范围与存储范围不匹配
常用芯片Sony IMX586、IMX789 等同上及 HDR 模式下

如果你正在调 sensor 驱动或 HAL,有时会看到 QSC / SPC / AWBOTP / LSC 等一起出现,它们都属于 sensor 的 OTP 校准表内容的一部分。而 LTC 则更偏向于 sensor pipeline 中的实时图像输出格式控制。

LTC(Linear to Companding)PWL(Piece-Wise Linear) 有非常紧密的关系。


先说核心概念对比:

名称含义作用关系
LTCLinear to Companding把线性图像数据压缩成对数(或伪对数)形式,扩大动态范围Companding的目的
PWLPiece-Wise Linear使用一段段线性函数逼近复杂曲线(如对数曲线)实现Companding的方式之一

LTC ≈ 用 PWL 来近似对数压缩

在图像传感器中,LTC 是一种 “压缩编码”策略,用来将宽动态范围的线性信号映射到有限的 bit 深度输出中。为了解决实际硬件中无法高效实现真实对数映射的问题,很多 sensor(特别是 Sony 和 Samsung 的高端 sensor)采用 PWL 近似对数函数,实现 LTC。

举个例子:

假设原始线性亮度值范围是 065535(16bit),我们希望压缩成 01023(10bit):

  • 若直接线性映射,高亮部分很容易丢细节

  • 如果用 LTC(对数压缩),可以保留更多暗部细节

这时,PWL 表如下所示(伪代码):

if (input < T1) output = A1 * input + B1;
else if (input < T2) output = A2 * input + B2;
else output = A3 * input + B3;

即通过一段段线性函数(A*x+B)来逼近 log 曲线。


在图像传感器里的作用

在高动态范围图像中,传感器可能输出 原始线性数据已经过 LTC 的压缩数据,这个压缩过程往往就在 sensor pipeline 内部完成,不需要 ISP 参与。

使用 PWL 做 LTC 有几个优势:

  • 低硬件复杂度:对数函数计算较复杂,PWL 用 LUT+简单乘加即可实现

  • 实时性好:适合在 sensor pipeline 或 ISP 中做高速处理

  • 灵活可调:有的 sensor 支持配置 PWL 分段参数,可适配不同亮度场景


示例:LTC 在 Sony IMX689 中的描述(实际手册中)

LTC companding output is enabled via register 0x3A00. The companding curve follows a PWL approximation of log2 domain with 4 segments.


总结一句话:

是的,LTC 是一种压缩机制,而 PWL 是实现 LTC 的主要方式之一。

在 sensor 中,PWL 是一种工程优化手段,让对数压缩变得高效可控;而 LTC 是目标,目标是 在有限比特数内最大限度保留图像动态范围

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值