机械学习算法小结1——knn算法 (K-临近算法)

本文介绍了KNN(K-最近邻)算法的基本原理和应用场景,如字符识别、文本分类和图像识别。KNN算法的核心是通过计算样本间的欧式距离找到最接近的K个邻居,从而进行分类。通过一个电影分类的例子,详细展示了如何利用Python实现KNN算法,包括数据准备、距离计算、排序、选择最近邻和确定类别。同时,讨论了KNN的特性,如惰性学习、高计算复杂度和k值选择对结果的影响。
摘要由CSDN通过智能技术生成

KNN 概述:

Knn(k-nearestNeighbor)算法是一种基本的分类与回归的方法。是最简单易懂的机械学习算法,没有之一。

概括性的一句话就是:近朱者赤近墨者黑。

knn的应用场景大多在,字符识别,文本分类,以及图像识别当中。

该算法的核心意思即是:一个样本在数据集中于其他的K个样本相似,而其他的样本属于一类,那么这个样本也属于这个类别。

下面我们用实例分析一下:

 

序号

电影名称

搞笑镜头

拥抱镜头

打斗镜头

电影类型

1. 

宝贝当家

45

2

9

喜剧片

2. 

美人鱼

21

17

5

喜剧片

3. 

澳门风云3

54

9

11

喜剧片

4. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值