算法训练 P0505
时间限制:1.0s 内存限制:256.0MB
一个整数n的阶乘可以写成n!,它表示从1到n这n个整数的乘积。阶乘的增长速度非常快,例如,13!就已经比较大了,已经无法存放在一个整型变量中;而35!就更大了,它已经无法存放在一个浮点型变量中。因此,当n比较大时,去计算n!是非常困难的。幸运的是,在本题中,我们的任务不是去计算n!,而是去计算n!最右边的那个非0的数字是多少。例如,5!=12345=120,因此5!最右边的那个非0的数字是2。再如,7!=5040,因此7!最右边的那个非0的数字是4。再如,15!= 1307674368000,因此15!最右边的那个非0的数字是8。请编写一个程序,输入一个整数n(0<n<=100),然后输出n!最右边的那个非0的数字是多少。
输入:
7
输出:
4
解题思路:
这道题,刚看到的时候,思路有些不清晰,写下来记录一下。
刚开始想的时候有些复杂了,想着每次乘完之后,取后两三位非零的数,如果结果里只剩下一个非零,就向上一个结果里再取一个,考虑到是否要用递归。
但是这个题官方没有给锦囊,应该不会这么复杂,就百度了一下,思路一下就清晰了。问题一下子变得很简单。贴代码,一目了然
完整代码
#include<iostream>
using namespace std;
int main()
{
int n;
cin>>n;
long long ans=n,chu=1e10;
while(--n)
{
ans = ans*n%chu;
while(ans%10==0)
ans=ans/10;
}
cout<<ans%10;
}