题意:有几种操作,add加入一个数,del删除一个数,问所有下标%5==3的数的和
思路:看题就知道是线段树,又有加入又有删除又有求和的,线段树无疑,可是问的是下标%5==3的数的和,我们可以令开一个数组cnt,记录区间数字的个数,这样我们开一个num数组,二维的,后面的[5]分别记录区间的下标%5==0,1,2,3,4的数的和,在更新的时候,如果要求num[][3]的值,则左儿子的[3]加上右儿子那部分,右儿子怎么算呢,因为左儿子的数字个数已经知道了cnt嘛,这样我们可以通过它求右儿子的,但不一定是[3]的了,如果cnt==4,则右儿子应该为[4]的值,画一画一目了然,对了,这题数太大,所以要离散化,比较简单
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int maxn=100010;
ll num[maxn*4][5];
int a[maxn],n,m,cnt[maxn*4];
struct edge{
char c;
int x;
}q[maxn];
void pushup(int node){
cnt[node]=cnt[node<<1]+cnt[node<<1|1];
for(int i=0;i<5;i++){
num[node][i]=num[node<<1][i]+num[node<<1|1][(i-cnt[node<<1]%5+5)%5];
}
}
void add(int pos,int val,int le,int ri,int node){
if(le==ri){
cnt[node]=1;
num[node][1]=val;
return ;
}
int t=(le+ri)>>1;
if(pos<=t) add(pos,val,le,t,node<<1);
else add(pos,val,t+1,ri,node<<1|1);
pushup(node);
}
void del(int pos,int le,int ri,int node){
if(le==ri){
num[node][1]=cnt[node]=0;
return ;
}
int t=(le+ri)>>1;
if(pos<=t) del(pos,le,t,node<<1);
else del(pos,t+1,ri,node<<1|1);
pushup(node);
}
int main(){
char str[10];
while(scanf("%d",&n)!=-1){
m=0;
for(int i=0;i<n;i++){
scanf(" %s",str);
q[i].c=str[0];
if(str[0]!='s'){
scanf("%d",&q[i].x);
a[m++]=q[i].x;
}
}
sort(a,a+m);
m=unique(a,a+m)-a;
memset(cnt,0,sizeof(cnt));
memset(num,0,sizeof(num));
int pos;
for(int i=0;i<n;i++){
if(q[i].c=='s') printf("%I64d\n",num[1][3]);
else{
pos=lower_bound(a,a+m,q[i].x)-a+1;
if(q[i].c=='a') add(pos,q[i].x,1,m,1);
else del(pos,1,m,1);
}
}
}
return 0;
}