我猜你不懂矩阵分析???机器人控制、SLAM先导知识 ——(1.1)线性空间

在这里插入图片描述


1.1、线性空间

给定非空集合 V V V和域 F \Bbb{F} F,若存在映射 σ \sigma σ V × V → V V×V→V V×VV ( V 1 , V 2 ) ↦ σ ( V 1 , V 2 ) (V_1,V_2)\mapsto\sigma(V_1,V_2) (V1,V2)σV1,V2)则称 σ \sigma σ V V V上的加法。


1.1.1 域

域: 有+,-,×,÷的一个运算系统。

那么什么不是域呢?
Z + = { 0 , 1 , 2 , 3 , 4 , . . . } Z_+ = \{0, 1, 2, 3, 4, ...\} Z+={ 0,1,2,3,4,...}这就不是个域,因为不存在除法、减法的运算,0-1不再 Z + Z_+ Z+的集合内了。
Z = { 0 , ± 1 , ± 2 , . . . } Z=\{0, ±1, ±2, ...\} Z={ 0,±1,±2,...}这也不是个域,因为不存在除法的运算。
关于一个运算是否封闭是一个很重要的问题。

那有理数(rational number,两个整数的比)集呢? 当然是!所以成为有理数域。故可以写做 Q \Bbb{Q} Q —— 这种叫黑板体,表示一个域的时候这样写。当然还有实数(Real Number)域 R \Bbb{R} R和复数(Complex Number)域 C \Bbb{C} C


1.1.2 卡氏积

×:集合的卡氏积(Cartesian Product)

S 1 × S 2 = { [ s 1 s 2 ] ∣ s 1 ∈ S 1 , s 2 ∈ S 2 } S_1×S_2=\{ \begin{bmatrix} s_1 \\ s_2 \\ \end{bmatrix}|s_1\in{S_1},s_2\in{S_2}\} S1×S2={ [s1s2]s1S1,s2S2}
就是形成的元素对。可以通过 把平面和坐标轴的轴线的关系联系起来 通过卡氏积来理解。

加法理解为映射(二元函数) σ : V × V → V \sigma:V×V\to V σV×VV,任意抽取两个值进行加法运算,应当理解为从 V V V的卡氏积里抽取一个“对”,是有顺序的。 R 2 → R \Bbb R^2 \to \Bbb R R2R


1.1.3 ↦ \mapsto

↦ \mapsto 需要注意 → \to ↦ \mapsto 的区别,第二个坐标多了一道;用法上:
A → B A\to B AB a ↦ b a\mapsto b ab
这就能看出区别,两者都代表映射关系, → \to 两边都是集合, ↦ \mapsto 两边都是集合里的元素。

举例:函数 s i n x sinx sinx是一个映射,我们这里使用定义域 ( − ∞ , ∞ ) (-\infty,\infty) (,)到值域 [ − 1 , 1 ] [-1,1] [1,1]的映射。那么π到0的映射就能写成 π ↦ \mapsto 0

我们需要把固有的概念改变一下,把加法看做二元映射,


1.1.4 线性空间

上面都是先导知识,那么设 V V V是一个非空集合, P \Bbb{P} P是一个数域,在 V V V上定义了一种代数运算,记为“ + + +”;定义了 P \Bbb{P} P V V V V V V的一种代数运算,成为数量乘法(简称数乘),记为“ ⋅ \cdot ”,如果满足“通常的运算规则”,则称集合 V V V为数域 P \Bbb{P} P上的线性空间

通常的运算规则:
熟知的加法交换律,结合律,分配率,有零元,有负元等等。

解释一下有零元,就是“存在 e ∈ V e\in{V} eV,满足 e + v = v e+v=v e+v=v”。其实就是零和任意元素相加都是该元素本身。这里是抽象的概念。
那么有负元,就是“对任意 v ∈ V v\in{V} vV存在 a ∈ V a\in{V} aV使 v + a = e v+a=e v+a=e e e e是零元,称作 a = − v a=-v a=v”。

对于数乘

  1. ( v 1 + v 2 ) ⋅ k = v 1 ⋅ k + v 2 ⋅ k (v_1+v_2)·k=v_1·k+v_2·k (v1+v2)k=v1k+v2k,这里的加法都是向量的加法;
  2. v ⋅ ( k 1 + k 2 ) = v ⋅ k 1 + v ⋅ k 2 v·(k_1+k_2)=v·k_1+v·k_2 v(k1+k2)=vk1+vk2,这里前者加法是两个数字相加,后者是向量的加法;
  3. v ⋅ ( k ⋅ l ) = ( v ⋅ k ) ⋅ l v·(k·l)=(v·k)·l v(kl)=(vk)l,这里有四个乘,第一个、第三个、第四个是数乘;第二个是数字的乘法。

为什么做数乘时把数放在向量右边??

若向量为列向量,数乘法的数写在右侧,若向量为行向量,数乘法的数写在左侧。
原因: [ 1 2 1 3 ] ⋅ 2 = [ 1 2 6 ] \begin{bmatrix} \frac{1}{2} \\ 1 \\3\\ \end{bmatrix}·2=\begin{bmatrix} 1 \\ 2\\6 \\ \end{bmatrix} 21132=126可以看做一个 [ 3 , 1 ] [3,1] [3,1] [ 1 , 1 ] [1,1] [1,1]的矩阵相乘。


F ( I , R n ) F(I,\Bbb R^n) F(I,Rn)函数空间, I I I是一个区间, R n \Bbb R^n Rn是n个分量的域。例如: F ( [ 0 , 1 ] , R 2 ) F([0,1],\Bbb R^2) F([0,1],R2),元素为 f = [ f 1 ( x ) f 2 ( x ) ] f=\begin{bmatrix}f_1(x)\\f_2(x)\end{bmatrix} f=[f1(x)f2(x)],这里的 f 1 ( x ) f_1(x) f1(x) f 2 ( x ) f_2(x) f2(x)均是定义域为 [ 0.1 ] [0.1] [0.1]的两个分量,函数空间囊括了如 f f f一样的含有多个分量的在 I I I区间下的函数元素。
f = [ f 1 ( x ) f 2 ( x ) . . . f n ( x ) ] f=\begin{bmatrix}f_1(x)\\f_2(x)\\...\\ f_n(x)\end{bmatrix} f=

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值