numpy.random.multivariate_normal 的用法

从多元正态分布中抽取随机样本。

多元正态分布,多正态分布或高斯分布是一维正态分布向更高维度的推广。这种分布由其均值和协方差矩阵来确定。这些参数类似于一维正态分布的平均值(平均值或“中心”)和方差(标准差或“宽度”,平方)。

参数:

mean:长度为N的1-D array_like

N维分布的均值。如:[1,1]  各维度的均值

cov:2-D array_like,形状(N,N)如:[[1, -.5], [-.5, 1]]

协方差矩阵的分布。它必须是对称正半定的,才能正确取样。

size:int或int的元组,可选

给定的形状,例如,(m,n,k)m*n*k产生的样品,并包装在一 -by- Ñ -by- ķ布置。由于每个样本都是N维的,因此输出形状为(m,n,k,N)如果没有指定形状,则返回单个(N- D)样本。

check_valid:{'warn','raise','ignore'},可选

当协方差矩阵不是正半定时的行为。

tol:float,可选

检查协方差矩阵中的奇异值时的容差。

返回:

out:ndarray

如果提供的话,绘制的样本的形状大小如果没有,形状是(N,)

换句话说,每个条目out[i,j,...,:]都是从分布中抽取的N维值。


平均值是N维空间中的一个坐标,表示样本最有可能产生的位置。这类似于一维或单变量正态分布的钟形曲线的峰值。

协方差表示两个变量一起变化的水平。从多元正态分布中,我们绘制N维样本X = [x_1,x_2,... x_N]协方差矩阵元素C_ {} IJ是的协方差X_Ix_j元素C_ {二}是方差X_I(即其“扩散”)。



评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值