七析BI图表配置基本原理深度解析

本文介绍了图形可视化在BI分析中的重要性,如何选择合适的图表类型,以及七析BI的配置原理,包括直角坐标系、极坐标系和地理坐标系的应用,以及如何通过颜色、大小、标签和角度等视觉配置提升数据的可读性和交互性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

图形可视化是BI分析最基本的呈现形式,拥有一个能自由灵活配置的可视化工具对于数据分析来说至关重要。七析BI采用业界可视化主流标准,基于可视化视觉语言设计灵活的视觉效果配置

为什么需要可视化?

人是视觉动物,对于图像的阅读比文字的阅读更容易集中注意力,也更方便理解。一个好的数据可视化看板,不需要太多的文字说明即可让人关注重点发现问题

如何选择合适的图表?

常见的图表类型有很多,比如:柱状图、折线图、饼图、雷达图等等。

如何从几十种甚至上百种图形中选择合适的可视化图表?

可视化图表的本质目的是用来传递信息,所以选择图表的第一要素就是能准确表达信息,其次才是美观。

数据可视化第一步,明确传递信息的目的,即期望表达什么信息。

有了明确目的,才能进一步的指导我们后续的工作。

例如:销售人员期望看见的是本月的销售排名,销售管理者期望看见总店在近年的销售额变化趋势

根据数据表现的目的,图表的表现形式可以区分为以下几种常见类型:

使用图表的目的

适合的图表类型

对比型

多系列条形图、分组条形图、雷达图、玫瑰图

趋势型

分组折线图、多色折线图、面积图

占比型

饼图、环形图、堆积条形图

分布型

区域地图、点地图、直方图

关键值型

KPI指标图

对比型

在数据处理的过程中,对数据进行比较、排序,是对数据最常见的处理方式。

柱形图常用于相同分组下,同类数据值之间的比较。用柱子高度显示数值比较,用颜色来区分不同类的数据,清晰地比较出同一维度下不同指标的数据量差距。此外,按照顺序将柱子的数据进行有序排序后,能够直观展现出分组之间的排名。

雷达图、玫瑰图用于比较多个量化的变量,强调相对值的对比,突出同一事物不同维度的之间的比较。

例如:

  • 年级成绩排名。
  • 各地区之间四个季度的销售额。
  • 本学期个人德智体美评分综合对比。
  • 上半年花费在A产品上的预算支出占比数据。

趋势型

多色折线图、面积图常用对比在时间趋势的增长下,数据值的大小变化

例如:

  • 近一年,公司某几款产品的销售额的变化趋势。
  • 过去十年,我国平均薪资的涨幅。

占比型

饼图、环形图、堆积条形图都能较清晰的比较出某数据在整体中的占比值通过颜色的渲染,从视觉上给用户直观的视觉占比感受。

例如:

  • 某食品的营养成分含量占比。
  • 公司某几款产品分别占公司总销售额的比值。

分布型

通过地域之间的区块或地区之间的打点数据,来表示区域之间数据的对比关系,通过地图来展现数据的分布特征。

例如:

  • 过去一年各省份的人口增长数量。
  • 某省地级市销售额。

关键值型

在数据的展现过程中,不关心数据的对比、趋势等,仅需突出展现特定的指标值

例如:

  • 一月份某市进出口成交量同比上涨35.86%。
  • 本季度净资产营收25100万元。

七析BI配置原理

图表拆解分析

一个图表的构成,可以抽象总结为3个元素:坐标系、数据、图形

1.坐标系:决定数据的呈现位置。例如,柱状图的展现基于直角坐标系,雷达图的展现基于极坐标系。

2.数据:要展示的数据信息。例如:一年级各班级的期末考试语文平均分。

3.图形:数据的一种表现形式。例如:柱状图的柱子、折线图的线段、饼图的扇形等。还有额外的附属属性:颜色、大小、角度、形状等。

坐标系

对数据进行可视化时,需要将数据放在空间的某个位置进行展示。描述该数据在空间中位置信息的方法,就称之为“坐标系”

在一维空间(线)上, 我们只需要一个值,就可以定位这条线上一个点的位置。

在二维空间(平面)上,我们则需要两个值来定位一个点(x,y)。

更高维的度的空间,就需要更多的值来描述一个点的位置信息,比如三维空间中的(x,y,z)。

但是,更高维空间的数据可视化在BI工具中并不常见,需要依赖特定的建模工具加以实现。实际在图形的可视化中,图表通常在二维空间(平面)上展示。因此,需要对二维空间的坐标系有了解,以便选择更合理的图形进行数据可视化表达。二维空间的坐标系有三种:直角坐标系、极坐标系、地理坐标系。

直角坐标系

在二维空间(平面)上,我们需要两个值来定位一个点。首先,将二维空间的任意点定义为极点O。从极点O衍射出两条相互垂直的射线,这两条线定义为X轴,Y轴。定义点的水平位置为x,垂直位置为y。从而,该平面上的任意点,都可以由(x,y)定义。这个平面称为直角坐标系

直角坐标系中,基于数据点的确定后,对点做图形化展示,可以演变出条形图、折线图、面积图等类型的图表。

直角坐标系

衍生出的图表

极坐标系

在二维空间(平面)上,我们则需要两个值来定位一个点。首先,将二维空间的任意点定义为极点O。从极点O衍射出一条射线,定义为极轴。定义点到极点的距离为ρ,极轴到点线的角度θ。这样,平面上的任意点,都可以由(ρ,θ)定义。这个平面称为极坐标系

极坐标系中,基于数据点的确定后,对点即角度做图形化展示,可以演变出饼图、玫瑰图、雷达图等类型的图表。

极坐标系

衍生出的图表

地理坐标系

地理坐标系是对现实地理的一种二维平面化、缩略化展示。地理坐标系可以通过「经度」、「纬度」来确定地球上任何一点的位置,大到国家、小到省市区,都有其特定的经纬度坐标。因此,在平面的地理坐标系上,可以将省市区具体地理位置上的信息数据用点或色块表示。

数据

数据是图表组成的重要部分,图表呈现是数据的可视化形式,在数据分析领域,数据通常被定义为「维度」「度量」

维度与度量

「维度」是看事物的视角,比如,时间,地点等;度量是衡量事物的尺度。

数据信息拆解:任何一个需要进行数据可视化的需求或问题,都可以从中提取数据信息的范围「视角」以及结果

  • 范围:比如“2022年广东省的销售额总和”与“2023年广东省的销售额总和”,由于数据范围的不同,数据聚合的结果值就截然不同。
  • 视角:比如“全国的销售额”比“广东省的销售额”更加抽象,表示了数据信息展现的详情级别。
  • 结果:比如“广东省份的销售额总和”与“广东省份的利润总和”,是两个不同的结果值。

我们将“数据视角”与“数据结果”,用更精确的名称即定义为“维度”与“度量”。可以总结出,维度是查看数据的视角,度量是衡量数据的大小。根据维度、度量的定义,将文本、日期、日期时间归类为维度字段;整数、小数归类为度量字段

字段

类型

定义

维度

文本、日期、日期时间

看待事物的角度,进行数据的分类或分组

度量

整数、小数

明确的计量单位,展现数据的数值、趋势、占比值等

坐标系与数据的关系

用直角坐标系描绘数据时,一般用横轴放置维度纵轴放置度量。即横轴作到一个数据的分组,纵轴作数值的展现,清晰直观地反映变量与数值之间的对应关系。

常见的极坐标系的玫瑰图,图表整体在极坐标系的中心。每个扇形的圆心角大小以及半径,表示该分组占总体的比例,以极点逆时针将数据角度展开。所以,视觉通道的角度、大小,相当于直角坐标系图表的度量的占比,直接影响视觉的扇形的面积。

根据国际标准,每个地理名称都有已定义的经纬度。因此,在地理坐标系中,地理名称都可准确找到对应的点位。在图形可视化过程中,可以将每个省市区具体地理位置上的信息数据用描点色块表示。​​​​​​​

多维度

维度是数据在图表中的分类和分组的依据,决定了观察和分析数据的视角和深度

当我们在一个图表上同时使用多个维度时,不同维度之间的相互作用也会产生对应的分类,这可以揭示数据之间更加深层次的关联与规律。 

例如:通过对比以下图表,发现在多维度字段的情况下,产品类别的基础上继续划分出子类别,对数据进行了更深一个层次的分组,将数据切分得更加细致。

一维度

多维度

多度量

在我们已经选择了需要展现数据维度的基础上,接下来思考的是,需要展现维度的什么数据?比如:销售额、数量、人数、占比等。度量是明确的计量单位,决定了数据在坐标系中的位置或大小,反映了维度数值的直观映射,帮我们观察数据之间的差异。

当我们在一个图表上同时使用多个度量时,可以展示同一分组数据内更多角度的数据信息。 

例如:通过对比以下图表,发现在多度量的情况下,图表数据在同一分组中展现了多组数值,可以更加多元化地分析维度中的分组。

一度量

多度量

图形

坐标系决定图表呈现的位置,那么图形就是决定图表呈现的视觉效果。七析BI针对图形效果配置做了原子粒度拆分,可以自定义配置想要的视觉呈现效果。

图形根据呈现效果,可以分为三种:点、线、面

常见的散点图即是在直角坐标系的空间中进行准确地打点渲染。

线

线将坐标轴中的点与点之间进行连线,构成了基础的折线图。

在点的基础上,在向坐标轴填满面积区块,即形成柱状图或面积图。

以上总结出的“点”“线”“面”,进而演化出了圆点,三角点,星点,折线,曲线,省市面积,扇形等,我们将这些坐标系内,基于数据所构建出的图形形态,统一称之为“图元”

样式视觉配置

坐标系+图形可以完成基本图形可视化构造,相当于构建了图形的骨架,但是图形如果需要展示更好看,更具备可读性和可交互性,还需要依赖样式视觉配置。七析BI把样式视觉配置提炼为:颜色、大小、标签、详情、以及角度。其中角度是针对「极坐标系」下的一个配置,其余配置都是针对视觉效果的配置。

颜色

颜色通道在视觉效果上可以做到最为明显的区分。当图表展示多个分类的数据时,可以使用不同的颜色来区分不同的分类,通过颜色的深浅判断数据的大小。

在了解图表颜色的渲染规则前,我们需要知道什么是色相、饱和度、明度

而在图表的视觉通道中,使用色相来区分维度,一个色相代表一个数据。使用饱和度来标识度量的大小,数据值越高,颜色越深。当前,七析BI提供了多种主题配色,在颜色通道放置维度或度量字段时,在图表的渲染上会有不同的效果:

以下为颜色通道放置字段后展示的效果示例:

颜色通道配置前

颜色通道配置后

注意:颜色视觉通道是为了带来更有效的信息,在数据分组较多的情况下,颜色信息可能反而会带来干扰因素。不要为了“有颜色”而配置无意义的、混乱颜色。

大小

图元的面积也是图表使用过程中,能直观影响用户感知的一个重要因素。通过改变图元的大小,来突出显示数据,扩大数据在视觉中的占比,使得重要的数据更为突出明显。

大小用于控制图形的形状、条形、线形的宽窄、图案的形状的大小、极坐标图形的轴半径等。而每个省市区已经是定义好的法定边界面积。因此,“大小”作用的目标形状对象是柱、线、饼、圆。

大小的作用效果有两个:

1.控制图元在整个坐标系中的大小。

2.使得放置的字段的数据差别在视觉效果上更加明显。

以下为大小通道放置字段后展示的效果示例:

大小通道配置前

大小通道配置后

标签

标签在图表中可以应用与多个场景,最直接的作用即标注出数据的信息。使用标签来直接标注图表中的每个数据点,说明该数据点代表的具体数值或信息。

对于不同的图表类型,标签的摆放位置也有效果上的差异。数据标签显示在图表的上方、一侧或内部,以辅助标识和理解。

以下为标签通道放置字段后展示的效果示例:

标签通道配置前

标签通道配置后

详情

数据可视化和图表设计中使用详情视觉通道,可以在保持图表的整体直观性的同时,通过简单的鼠标互动提供更加详尽的数据信息展示。

以下为详情通道放置字段后展示的效果示例:

详情通道配置前

详情通道配置后

角度

使用角度的大小来映射不同数据的数量、占比、维度等。角度的大小,间接的利用了面积占比的视觉刺激,突出显示重点的数据内容。

在饼图、环形图、玫瑰图中,每个扇形的圆心角大小,表示该分组占总体的比例。所以,视觉通道的角度相当于直角坐标系图表的度量,直接影响视觉占比的扇形的面积。

尽管饼图与环形图常被当做是同一类图表,但是饼图的视觉暗示是圆形中的相对角度,即扇形的面积。环形图的视觉暗示是弧长,因为环形图可以表示角度的圆心被切除了。

以下为角度通道放置字段后展示的效果示例:

角度通道配置前

角度通道配置后

以上就是七析BI图表设计器的基本原理,为了方便大家对图形可视化有更深的认识,推荐常见的可视化学习网站,希望能帮助大家更好的学习数据分析和数据可视化。

推荐学习网站

The Data Visualisation Catalogue

介绍多类型的图表的具体用法和可实现的工具。



Data Viz Project

每一种图表类型都附带了该图表类型优秀的参考案例。



图之典

涵盖了常用的图表使用规范,并且收录了很多国内外优化的可视化案例。



Apache ECharts

基于 JavaScript 的开源可视化图表库。



CHARTJS

提供常用的图表类型、插件和自定义选项,辅助开发。

其他

以下为英国《金融时报》视觉小组撰写的可视化词典。

作者介绍:
道一云,成立于2004年,是中国低代码领域的领导厂商、腾讯战略投资企业、腾讯生态核心合作伙伴。拥有自主知识产权管理软件产品百余项,涵盖数字化应用构建低代码平台-七巧、全场景智能业务分析BI-七析、千人千面、数智化办公企业级门户-七星以及30多款开箱即用的场景应用。

欢迎关注:

官网:道一云七巧 - 可视化、智能化、数字化应用构建

免费体验:道一云产品免费试用

公众号:道一云低代码(do1info)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道一云黑板报

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值