概述
图形可视化是BI分析最基本的呈现形式,拥有一个能自由灵活配置的可视化工具对于数据分析来说至关重要。七析BI采用业界可视化主流标准,基于可视化视觉语言设计灵活的视觉效果配置。
为什么需要可视化?
人是视觉动物,对于图像的阅读比文字的阅读更容易集中注意力,也更方便理解。一个好的数据可视化看板,不需要太多的文字说明即可让人关注重点、发现问题。
如何选择合适的图表?
常见的图表类型有很多,比如:柱状图、折线图、饼图、雷达图等等。
如何从几十种甚至上百种图形中选择合适的可视化图表?
可视化图表的本质目的是用来传递信息,所以选择图表的第一要素就是能准确表达信息,其次才是美观。
数据可视化第一步,要明确传递信息的目的,即期望表达什么信息。
有了明确目的,才能进一步的指导我们后续的工作。
例如:销售人员期望看见的是本月的销售排名,销售管理者期望看见总店在近年的销售额变化趋势。
| |
根据数据表现的目的,图表的表现形式可以区分为以下几种常见类型:
使用图表的目的 | 适合的图表类型 |
对比型 | 多系列条形图、分组条形图、雷达图、玫瑰图 |
趋势型 | 分组折线图、多色折线图、面积图 |
占比型 | 饼图、环形图、堆积条形图 |
分布型 | 区域地图、点地图、直方图 |
关键值型 | KPI指标图 |
对比型
在数据处理的过程中,对数据进行比较、排序,是对数据最常见的处理方式。
柱形图常用于相同分组下,同类数据值之间的比较。用柱子高度显示数值比较,用颜色来区分不同类的数据,清晰地比较出同一维度下不同指标的数据量差距。此外,按照顺序将柱子的数据进行有序排序后,能够直观展现出分组之间的排名。
雷达图、玫瑰图用于比较多个量化的变量,强调相对值的对比,突出同一事物不同维度的之间的比较。
例如:
- 年级成绩排名。
- 各地区之间四个季度的销售额。
- 本学期个人德智体美评分综合对比。
- 上半年花费在A产品上的预算支出占比数据。
趋势型
多色折线图、面积图常用对比在时间趋势的增长下,数据值的大小变化。
例如:
- 近一年,公司某几款产品的销售额的变化趋势。
- 过去十年,我国平均薪资的涨幅。
占比型
饼图、环形图、堆积条形图都能较清晰的比较出某数据在整体中的占比值。通过颜色的渲染,从视觉上给用户直观的视觉占比感受。
例如:
- 某食品的营养成分含量占比。
- 公司某几款产品分别占公司总销售额的比值。
分布型
通过地域之间的区块或地区之间的打点数据,来表示区域之间数据的对比关系,通过地图来展现数据的分布特征。
例如:
- 过去一年各省份的人口增长数量。
- 某省地级市销售额。
关键值型
在数据的展现过程中,不关心数据的对比、趋势等,仅需突出展现特定的指标值。
例如:
- 一月份某市进出口成交量同比上涨35.86%。
- 本季度净资产营收25100万元。
七析BI配置原理
图表拆解分析
一个图表的构成,可以抽象总结为3个元素:坐标系、数据、图形。
1.坐标系:决定数据的呈现位置。例如,柱状图的展现基于直角坐标系,雷达图的展现基于极坐标系。
2.数据:要展示的数据信息。例如:一年级各班级的期末考试语文平均分。
3.图形:数据的一种表现形式。例如:柱状图的柱子、折线图的线段、饼图的扇形等。还有额外的附属属性:颜色、大小、角度、形状等。
坐标系
对数据进行可视化时,需要将数据放在空间的某个位置进行展示。描述该数据在空间中位置信息的方法,就称之为“坐标系”。
在一维空间(线)上, 我们只需要一个值,就可以定位这条线上一个点的位置。
在二维空间(平面)上,我们则需要两个值来定位一个点(x,y)。
更高维的度的空间,就需要更多的值来描述一个点的位置信息,比如三维空间中的(x,y,z)。
但是,更高维空间的数据可视化在BI工具中并不常见,需要依赖特定的建模工具加以实现。实际在图形的可视化中,图表通常在二维空间(平面)上展示。因此,需要对二维空间的坐标系有了解,以便选择更合理的图形进行数据可视化表达。二维空间的坐标系有三种:直角坐标系、极坐标系、地理坐标系。
直角坐标系
在二维空间(平面)上,我们需要两个值来定位一个点。首先,将二维空间的任意点定义为极点O。从极点O衍射出两条相互垂直的射线,这两条线定义为X轴,Y轴。定义点的水平位置为x,垂直位置为y。从而,该平面上的任意点,都可以由(x,y)定义。这个平面称为直角坐标系。
直角坐标系中,基于数据点的确定后,对点做图形化展示,可以演变出条形图、折线图、面积图等类型的图表。
直角坐标系 | 衍生出的图表 | ||
| | | |
极坐标系
在二维空间(平面)上,我们则需要两个值来定位一个点。首先,将二维空间的任意点定义为极点O。从极点O衍射出一条射线,定义为极轴。定义点到极点的距离为ρ,极轴到点线的角度θ。这样,平面上的任意点,都可以由(ρ,θ)定义。这个平面称为极坐标系。
极坐标系中,基于数据点的确定后,对点即角度做图形化展示,可以演变出饼图、玫瑰图、雷达图等类型的图表。
极坐标系 | 衍生出的图表 | ||
| | | |
地理坐标系
地理坐标系是对现实地理的一种二维平面化、缩略化展示。地理坐标系可以通过「经度」、「纬度」来确定地球上任何一点的位置,大到国家、小到省市区,都有其特定的经纬度坐标。因此,在平面的地理坐标系上,可以将省市区具体地理位置上的信息数据用点或色块表示。
数据
数据是图表组成的重要部分,图表呈现是数据的可视化形式,在数据分析领域,数据通常被定义为「维度」和「度量」。
维度与度量
「维度」是看事物的视角,比如,时间,地点等;度量是衡量事物的尺度。
数据信息拆解:任何一个需要进行数据可视化的需求或问题,都可以从中提取数据信息的「范围」、「视角」以及「结果」。
- 范围:比如“2022年广东省的销售额总和”与“2023年广东省的销售额总和”,由于数据范围的不同,数据聚合的结果值就截然不同。
- 视角:比如“全国的销售额”比“广东省的销售额”更加抽象,表示了数据信息展现的详情级别。
- 结果:比如“广东省份的销售额总和”与“广东省份的利润总和”,是两个不同的结果值。
我们将“数据视角”与“数据结果”,用更精确的名称即定义为“维度”与“度量”。可以总结出,维度是查看数据的视角,度量是衡量数据的大小。根据维度、度量的定义,将文本、日期、日期时间归类为维度字段;整数、小数归类为度量字段。
字段 | 类型 | 定义 |
维度 | 文本、日期、日期时间 | 看待事物的角度,进行数据的分类或分组 |
度量 | 整数、小数 | 明确的计量单位,展现数据的数值、趋势、占比值等 |
坐标系与数据的关系
用直角坐标系描绘数据时,一般用横轴放置维度,纵轴放置度量。即横轴作到一个数据的分组,纵轴作数值的展现,清晰直观地反映变量与数值之间的对应关系。
常见的极坐标系的玫瑰图,图表整体在极坐标系的中心。每个扇形的圆心角大小以及半径,表示该分组占总体的比例,以极点逆时针将数据角度展开。所以,视觉通道的角度、大小,相当于直角坐标系图表的度量的占比,直接影响视觉的扇形的面积。
根据国际标准,每个地理名称都有已定义的经纬度。因此,在地理坐标系中,地理名称都可准确找到对应的点位。在图形可视化过程中,可以将每个省市区具体地理位置上的信息数据用描点或色块表示。
多维度
维度是数据在图表中的分类和分组的依据,决定了观察和分析数据的视角和深度。
当我们在一个图表上同时使用多个维度时,不同维度之间的相互作用也会产生对应的分类,这可以揭示数据之间更加深层次的关联与规律。
例如:通过对比以下图表,发现在多维度字段的情况下,产品类别的基础上继续划分出子类别,对数据进行了更深一个层次的分组,将数据切分得更加细致。
一维度 | 多维度 |
多度量
在我们已经选择了需要展现数据维度的基础上,接下来思考的是,需要展现维度的什么数据?比如:销售额、数量、人数、占比等。度量是明确的计量单位,决定了数据在坐标系中的位置或大小,反映了维度数值的直观映射,帮我们观察数据之间的差异。
当我们在一个图表上同时使用多个度量时,可以展示同一分组数据内更多角度的数据信息。
例如:通过对比以下图表,发现在多度量的情况下,图表数据在同一分组中展现了多组数值,可以更加多元化地分析维度中的分组。
一度量 | 多度量 |
图形
坐标系决定图表呈现的位置,那么图形就是决定图表呈现的视觉效果。七析BI针对图形效果配置做了原子粒度拆分,可以自定义配置想要的视觉呈现效果。
图形根据呈现效果,可以分为三种:点、线、面。
点
常见的散点图即是在直角坐标系的空间中进行准确地打点渲染。
线
线将坐标轴中的点与点之间进行连线,构成了基础的折线图。
面
在点的基础上,在向坐标轴填满面积区块,即形成柱状图或面积图。
以上总结出的“点”“线”“面”,进而演化出了圆点,三角点,星点,折线,曲线,省市面积,扇形等,我们将这些坐标系内,基于数据所构建出的图形形态,统一称之为“图元”。
样式视觉配置
坐标系+图形可以完成基本图形可视化构造,相当于构建了图形的骨架,但是图形如果需要展示更好看,更具备可读性和可交互性,还需要依赖样式视觉配置。七析BI把样式视觉配置提炼为:颜色、大小、标签、详情、以及角度。其中角度是针对「极坐标系」下的一个配置,其余配置都是针对视觉效果的配置。
颜色
颜色通道在视觉效果上可以做到最为明显的区分。当图表展示多个分类的数据时,可以使用不同的颜色来区分不同的分类,通过颜色的深浅判断数据的大小。
在了解图表颜色的渲染规则前,我们需要知道什么是色相、饱和度、明度。
而在图表的视觉通道中,使用色相来区分维度,一个色相代表一个数据。使用饱和度来标识度量的大小,数据值越高,颜色越深。当前,七析BI提供了多种主题配色,在颜色通道放置维度或度量字段时,在图表的渲染上会有不同的效果:
以下为颜色通道放置字段后展示的效果示例:
颜色通道配置前 | 颜色通道配置后 |
| |
| |
| |
| |
注意:颜色视觉通道是为了带来更有效的信息,在数据分组较多的情况下,颜色信息可能反而会带来干扰因素。不要为了“有颜色”而配置无意义的、混乱颜色。 |
大小
图元的面积也是图表使用过程中,能直观影响用户感知的一个重要因素。通过改变图元的大小,来突出显示数据,扩大数据在视觉中的占比,使得重要的数据更为突出明显。
大小用于控制图形的形状、条形、线形的宽窄、图案的形状的大小、极坐标图形的轴半径等。而每个省市区已经是定义好的法定边界面积。因此,“大小”作用的目标形状对象是柱、线、饼、圆。
大小的作用效果有两个:
1.控制图元在整个坐标系中的大小。
2.使得放置的字段的数据差别在视觉效果上更加明显。
以下为大小通道放置字段后展示的效果示例:
大小通道配置前 | 大小通道配置后 |
| |
| |
标签
标签在图表中可以应用与多个场景,最直接的作用即标注出数据的信息。使用标签来直接标注图表中的每个数据点,说明该数据点代表的具体数值或信息。
对于不同的图表类型,标签的摆放位置也有效果上的差异。数据标签显示在图表的上方、一侧或内部,以辅助标识和理解。
以下为标签通道放置字段后展示的效果示例:
标签通道配置前 | 标签通道配置后 |
| |
| |
| |
详情
数据可视化和图表设计中使用详情视觉通道,可以在保持图表的整体直观性的同时,通过简单的鼠标互动提供更加详尽的数据信息展示。
以下为详情通道放置字段后展示的效果示例:
详情通道配置前 | 详情通道配置后 |
| |
角度
使用角度的大小来映射不同数据的数量、占比、维度等。角度的大小,间接的利用了面积占比的视觉刺激,突出显示重点的数据内容。
在饼图、环形图、玫瑰图中,每个扇形的圆心角大小,表示该分组占总体的比例。所以,视觉通道的角度相当于直角坐标系图表的度量,直接影响视觉占比的扇形的面积。
尽管饼图与环形图常被当做是同一类图表,但是饼图的视觉暗示是圆形中的相对角度,即扇形的面积。环形图的视觉暗示是弧长,因为环形图可以表示角度的圆心被切除了。
以下为角度通道放置字段后展示的效果示例:
角度通道配置前 | 角度通道配置后 |
| |
| |
以上就是七析BI图表设计器的基本原理,为了方便大家对图形可视化有更深的认识,推荐常见的可视化学习网站,希望能帮助大家更好的学习数据分析和数据可视化。
推荐学习网站
The Data Visualisation Catalogue
介绍多类型的图表的具体用法和可实现的工具。
Data Viz Project
每一种图表类型都附带了该图表类型优秀的参考案例。
图之典
涵盖了常用的图表使用规范,并且收录了很多国内外优化的可视化案例。
Apache ECharts
基于 JavaScript 的开源可视化图表库。
CHARTJS
提供常用的图表类型、插件和自定义选项,辅助开发。
其他
以下为英国《金融时报》视觉小组撰写的可视化词典。
作者介绍:
道一云,成立于2004年,是中国低代码领域的领导厂商、腾讯战略投资企业、腾讯生态核心合作伙伴。拥有自主知识产权管理软件产品百余项,涵盖数字化应用构建低代码平台-七巧、全场景智能业务分析BI-七析、千人千面、数智化办公企业级门户-七星以及30多款开箱即用的场景应用。
欢迎关注:
免费体验:道一云产品免费试用
公众号:道一云低代码(do1info)