【算法】动态规划 - 背包问题总结(三)

本文详细介绍了背包问题的子类型,包括01背包、完全背包、多重背包和分组背包,重点阐述了它们的状态转移方程和优化策略,特别是多重背包的二进制优化方法。
摘要由CSDN通过智能技术生成

概述

上次介绍完了完全背包问题,今天将介绍背包问题中的多重背包和分组背包问题。
回顾一下背包问题的所要解决的问题是:有N个物品,有一个容积为V的背包,每个物品有两个属性:体积v[i]和价值w[i]。在背包能装下的前提下,能装的物品的最大价值是多少?

多重背包

多重背包与前两个背包问题不同的是,每件物品的个数不一,用s[i]表示。
多重背包问题链接:多重背包问题I
多重背包问题II

状态转移方程

让我们再回忆一下求解动态规划问题的思路。求解动态规划可以分成两步,一部分是状态表示,一部分是状态计算。在背包问题中,我们都是用f[i, j]来表示所有只考虑前i个物品,且总体积不大于j的所有选法。
然后在完全背包问题中,由于有了物品数量的条件,我们将所有状态划分成了k份,中间某一份的状态计算就是f[i,j]=f[i-1,j-v[i]*k] + w[i]*k (k表示枚举第i个物品的个数)
而多重背包问题和完全背包问题的唯一区别就是每个物品的数量不是无限个,而是s[i]个。所以根据完全背包问题的思路,我们可以得出多重背包的状态方程:f[i,j] = max(f[i-1, j-v[i]*k] + w[i]*k) (k=0, 1, 2, ..., s[i])

朴素代码实现

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110;
int n, m;
int v[N], w[N], s[N];
int f[N][N];

int main() {
    cin >> n >> m;
    for (int i = 1; i <= n; i ++) cin >> v[i] >> w[i] >> s[i];

    for (int i = 1; i <= n; i ++) {
        for (int j = 0; j <= m; j ++) {
            for (int k = 0; k <= s[i] && k * v[i] <= j; k ++) {
                f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
            }
        }
    }

    cout << f[n][m];

    return 0;
}

多重背包的二进制优化

我们知道,通过2的幂次数的相加,我们可以得到2^n-1内的任意数。例如1, 2, 4我们可以得到8-1=7以内的所有数。
因此如果给定一个数的话,我们可以用2的幂次累加得到。
如果给定s=200,那么我们可以先用1, 2, 4, 8, 16, 32, 64得到1~127内的任意数,而128~200之间的数,我们只需要再加上一个73即可获得。(200 - 127 = 73)
也就是说,若第i个物品有s[i]个,可将s[i]]个物品拆成logs[i]个。拆完之后,再对这logs[i]个物品做一遍01背包问题即可。
这样的话,时间复杂度可以从原来的O(N*V*s[i])优化到O(N*V*logs[i])。再对状态表示进行一维优化,f[i]最多有N*logs[i]个。
多重背包问题的二进制优化

多重背包的二进制优化代码如下。

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 2000010, M = 2010;
int n, m;
int v[N], w[N];
int f[M];

int main() {
    cin >> n >> m;
    int cnt = 1;
    for (int i = 1; i <= n; i ++) {
        int a, b, s, k = 1;
        cin >> a >> b >> s;
        while (k < s) {
            v[cnt] = a * k;
            w[cnt] = b * k;
            cnt ++;
            s -= k;
            k *= 2;
        }
        if (s > 0) {
            v[cnt] = a * s;
            w[cnt] = b * s;
            cnt ++;
        }
    }

    n = cnt;

    for (int i = 1; i <= n; i ++) {
        for (int j = m; j >= v[i]; j --) {
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    }

    cout << f[m];

    return 0;
}

分组背包

概述

分组背包问题的关键是,有很多组物品,每一组里,只能选择一个物品。
分组背包问题描述

状态转移方程

由于多出了分组的物品,物品的价值和体积都分别用二维数组v[i][k], w[i][k]来表示。假设第i组一共有m个物品的话,我们可以划分成m+1个状态,用k表示其中的任一种状态。k=0就表示不选择第i组中的物品,k=1表示选择第i组中的第一个物品,以此类推,一直循环到k=m为止。
可以得到第i组的状态转移方程为f[i, j] = f[i-1, j-v[i,k]] + w[i, k]
分组背包问题状态转移方程

代码实现

在这里,直接实现分组背包的一维优化后的代码了。

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110;
int n, m;
int v[N][N], w[N][N], s[N];
int f[N];

int main() {
    cin >> n >> m;
    for (int i = 1; i <= n; i ++) {
        cin >> s[i];
        for (int j = 0; j < s[i]; j ++) {
            cin >> v[i][j] >> w[i][j];
        }
    }

    for (int i = 1; i <= n; i ++) {
        for (int j = m; j >= 0; j --) {
            for (int k = 0; k < s[i]; k ++) {
                if (j >= v[i][k]) {
                    f[j] = max(f[j], f[j - v[i][k]] + w[i][k]);
                }
            }
        }
    }

    cout << f[m];
    return 0;
}

总结

至此,背包问题中的01背包,完全背包,多重背包和分组背包问题都总结完毕。
在此放下前两节的链接以便复习。
01背包:https://blog.csdn.net/DarkComxEating/article/details/137654700?spm=1001.2014.3001.5501
完全背包:https://blog.csdn.net/DarkComxEating/article/details/137746871?spm=1001.2014.3001.5501

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值