算法 - 查找 - 二分查找 (Binary Search)
返回上级:算法 - 查找与排序 (Searching and Sorting)
本文将用C++实现通用模板二分查找算法,复制代码直接可使用。
在查看本文之前,需要一些程序语言的基础。
文章目录
1 二分查找简述 (Introduction)
二分查找,又叫折半查找,它只适用于有序顺序表。其时间复杂度 O(log2n) 。
假设表中有 n 个元素,查找过程为取区间中间元素的下标 mid ,对 mid 的关键字与给定值的关键字比较:
-
(1)如果与给定关键字相同,则查找成功,返回在表中的位置;
-
(2)如果给定关键字大,则更新左区间起始位置等于 mid + 1 ,即向右查找;
-
(3)如果给定关键字小,则更新右区间起始位置等于 mid - 1 ,即向左查找;
-
(4)重复过程,直到找到关键字(成功)或区间为空集(失败)。
通常情况下:
-
返回值,代表下标;
-
返回-1,代表没有找到关键字;
当 n = 2 h − 1 n=2^h-1 n=2h−1 (h 为二叉树高)时,其判定树为满二叉树时,查找成功平均查找长度为:
A S L s u c c = 1 n [ ( n + 1 ) log 2 ( n + 1 ) − n ] ≈ log 2 ( n + 1 ) − 1 {ASL}_{succ} = \frac{1}{n} \left[ (n+1)\log_2 (n+1) -n \right] \approx \log_2 (n+1) - 1 ASLsucc=n1[(n+1)log2(n+1)−n]≈log2(n+1)−1
当 n < 2 h − 1 n<2^h-1 n<2h−1 时
-
其高度为
h = ⌈ log 2 ( n + 1 ) ⌉ h= \lceil \log_2(n+1) \rceil h=⌈log2(n+1)⌉
-
其查找成功平均查找长度为:
A S L s u c c = 1 n [ h × ( n + 1 ) + 1 − 2 h ] {ASL}_{succ} = \frac{1}{n} \left[ h \times (n+1) +1 - 2^h \right] ASLsucc=n