感知机 (Perceptron)
• 输入为实例的特征向量,输出为实例的类别,取 +1 和 -1 ;
• 感知机对应于输入空间中将实例划分为正负两类的分离超平面,属于
判别模型;
• 导入基于误分类的损失函数;
• 利用梯度下降法对损失函数进行极小化;
• 感知机学习算法具有简单而易于实现的优点,分为原始形式和对偶形
式;
• 1957 年由 Rosenblatt 提出,是神经网络与支持向量机的基础
由此我们提出感知机的相关的定义
这里是对感知机的几何的性质的相关的解释
感知机 (Perceptron)
• 输入为实例的特征向量,输出为实例的类别,取 +1 和 -1 ;
• 感知机对应于输入空间中将实例划分为正负两类的分离超平面,属于
判别模型;
• 导入基于误分类的损失函数;
• 利用梯度下降法对损失函数进行极小化;
• 感知机学习算法具有简单而易于实现的优点,分为原始形式和对偶形
式;
• 1957 年由 Rosenblatt 提出,是神经网络与支持向量机的基础
由此我们提出感知机的相关的定义
这里是对感知机的几何的性质的相关的解释