感知机和统计学习方法总结

感知机 (Perceptron)
• 输入为实例的特征向量,输出为实例的类别,取 +1 和 -1 ;
• 感知机对应于输入空间中将实例划分为正负两类的分离超平面,属于
判别模型;
• 导入基于误分类的损失函数;
• 利用梯度下降法对损失函数进行极小化;
• 感知机学习算法具有简单而易于实现的优点,分为原始形式和对偶形
式;
• 1957 年由 Rosenblatt 提出,是神经网络与支持向量机的基础

由此我们提出感知机的相关的定义

这里是对感知机的几何的性质的相关的解释

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值