LeetCode记录 LCP 2. 分式化简
问题:有一个同学在学习分式。他需要将一个连分数化成最简分数,你能帮助他吗?
连分数是形如上图的分式。
在本题中,所有系数都是大于等于0的整数。
输入的cont代表连分数的系数(cont[0]代表上图的a0,以此类推)。返回一个长度为2的数组[n, m],使得连分数的值等于n / m,且n, m最大公约数为1。
示例 1:
输入:cont = [3, 2, 0, 2]
输出:[13, 4]
解释:原连分数等价于3 + (1 / (2 + (1 / (0 + 1 / 2))))。注意[26, 8], [-13, -4]都不是正确答案。
示例 2:
输入:cont = [0, 0, 3]
输出:[3, 1]
解释:如果答案是整数,令分母为1即可。
限制:
cont[i] >= 0
1 <= cont的长度 <= 10
cont最后一个元素不等于0
答案的n, m的取值都能被32位int整型存下(即不超过2 ^ 31 - 1)。
解题思路
已示例1为例说明
此时a0=3,a1=2,a2=0,a3=2,定义一个数组res[2];
首先将1/a3看作一个整体,res[0]来表示整体的分子,res[1]表示整体分母
然后再将下图标记部分看作整体进行通分加法
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200131150326525.jpg
将a2res[1]+res[0]存入数组res[0],之后进行res[0]和res[1]的交换(因为进行了取倒数的运算 )
得到如下结果
然后再将下图标记部分看作整体进行通分加法
将a1res[1]+res[0]存入数组res[0],之后进行res[0]和res[1]的交换
得到如下结果
在进行最后一次通分加法
将a0*res[1]+res[0]存入数组res[0],(!!!此时不要要进行交换,因为已是最后一次运算,无取倒数运算)
可得出正确结果 分子为res[0] 分母为res[1]
代码(C++)
#include<iostream>
#include<vector>
using namespace std;
class Solution {
public:
vector<int> fraction(vector<int>& cont) {
vector<int> res(2);
int temp=0;
int i=cont.size()-1;
res[0]=1;
res[1]=cont[i];
for(;i>0;i--)
{
temp=res[1];
res[1]=cont[i-1]*res[1]+res[0];
res[0]=temp;
}
temp=res[1];
res[1]=res[0];
res[0]=temp;
return res;
}
};
main()
{
int n[4]={3,2,0,2};
vector<int> cont(n, n+4);
Solution solution;
vector<int> result=solution.fraction(cont);
cout<<"["<<result[0]<<","<<result[1]<<"]";
}