状态机由状态寄存器和组合逻辑电路构成,能够根据控制信号按照预先设定的状态进行状态转移,程序的运行其本质也是状态机,根据输入完成输出,得到新的状态。
在平时硬件电路的设计中经常需要用到状态机,例如CPU的取指、译码、执行,这个流程可以使用状态机来控制,相比于流水线能够有效的较少资源的消耗,再或者序列检测上,也可以使用状态机。
状态机有一段、二段、和三段式,三段式的写法复杂些,但是相比于两段式可以使输出信号由寄存器来驱动,能够有效的消除组合逻辑的不稳定与毛刺等隐患。
首先给出三段式状态机的通用形式:
三段式状态机
Mealy型(米勒型)三段式状态机
当前输出与当前状态和输入有关
parameter S0=3'b000,
state1=3'b001,
state2=3'b010,
S3=3'b011;
reg [2:0] current_state;
reg [2:0] next_state;
//在第一个always块中只实现状态的迁移,将第二个always块中计算出的次态在时钟上升沿复制给current_state
always @(posedge clk or negedge rst_n)
begin
if(!rst_n)
begin
current_state<=0;
next_state<=0;
end
else
begin
current_state<=next_state;
end
end
//在第二个always块中计算next_state,使用组合逻辑来完成
always @(*)
begin
case(current_state)
S0:
if(..) //当然此刻的if判断也能用三目运算法来实现,看上去会更便捷一些:
next_state=S1;
else
next_state=S0;
S1:
if(..)
next_state=state?;
else
next_state=state?;
S2:
if(..)
next_state=state?;
else
next_state=state?;
S3:
if(..)
next_state=state?;
else
next_state=state?;
default:
next_state=S0;
endcase
end
//在第三个always块中计算输出,在满足什么情况下输出
always @(posedge clk or negedge rst_n)
begin
if(!rst_n)
begin
signal_out<=0;
end
else
begin
if(current_state==state?&&signal_in==?)
signal_out<=1;
else
signal_out<=0;
end
end
Moore型(摩尔型)三段式状态机
当前输出仅仅与当前状态有关
parameter S0=3'b000,
state1=3'b001,
state2=3'b010,
S3=3'b011;
reg [2:0] current_state;
reg [2:0] next_state;
//在第一个always块中只实现状态的迁移,将第二个always块中计算出的次态在时钟上升沿复制给current_state
always @(posedge clk or negedge rst_n)
begin
if(!rst_n)
begin
current_state<=0;
next_state<=0;
end
else
begin
current_state<=next_state;
end
end
//在第二个always块中计算next_state,使用组合逻辑来完成
always @(*)
begin
case(current_state)
S0:
if(..) //当然此刻的if判断也能用三目运算法来实现,看上去会更便捷一些:
next_state=S1;
else
next_state=S0;
S1:
if(..)
next_state=state?;
else
next_state=state?;
S2:
if(..)
next_state=state?;
else
next_state=state?;
S3:
if(..)
next_state=state?;
else
next_state=state?;
default:
next_state=S0;
endcase
end
//在第三个always块中计算输出,在满足什么情况下输出
always @(posedge clk or negedge rst_n)
begin
if(!rst_n)
begin
signal_out<=0;
end
else
begin
if(current_state==state?)
signal_out<=1;
else
signal_out<=0;
end
end
两种三段式状态机的状态图会有区别
测试用例
接下来我们使用具体的场景来介绍两者不同
设计一个状态机,用来检测序列 10111,要求:
1、进行非重叠检测 即101110111 只会被检测通过一次
2、寄存器输出且同步输出结果
信号示意图:
输入描述:
输入信号 clk rst data
类型 wire
输出描述:
输出信号 flag
类型 reg
首先第一件事就是画出状态转移,在此刻我们一定要注意到,flag是在检测完成的这一个周期拉高的,而不是下个周期
Mealy型(米勒型)状态图——输出与输入和现态有关
这个时候我们来解析这张图
复位之后当前状态是S0,假设在第一个时钟上升沿之前,data输入1,则通过第二个always组合逻辑块,会计算出next_state=S1,在第一个时钟上升沿,next_state=S1就会被赋值给current_state,也就是说从第一个上升沿之后到第二个上升沿之前,current会一直保持S1的状态。
假设在第一个上升沿之后到第二个上升沿之前,data输入变为了0,那么同理,组合逻辑会计算出新的next_state=S2,在第二个时钟上升沿倘若data不发生变化,则新的next_state会被赋值给current_state,从第二个上升沿之后到第三个上升沿之前,current会一直保持S2的状态。
假设在第二个上升沿之后到第三个上升沿之前,data输入变为了1,那么同理,组合逻辑会计算出新的next_state=S3,在第三个时钟上升沿倘若data不发生变化,则新的next_state会被赋值给current_state,从第三个上升沿之后到第四个上升沿之前,current会一直保持S3的状态。
假设在第三个上升沿之后到第四个上升沿之前,data输入变为了1,那么同理,组合逻辑会计算出新的next_state=S4,在第四个时钟上升沿倘若data不发生变化,则新的next_state会被赋值给current_state,从第四个上升沿之后到第五个上升沿之前,current会一直保持S4的状态。
假设在第四个上升沿之后到第五个上升沿之前,data输入变为了1,此时注意,前面我们谈到过,在这个题目中,在完成序列检测的这一个周期,flag就要拉高,此时我们需要第五个上升沿将flag拉高,因此需要在第三个always语句块中定位到这个时刻,也就是current_state= =S4&&data= =1,这也就是输出和现态以及输入都有关,之后current_state将变为S0,重新进行一轮新的检测。
`timescale 1ns/1ns
module sequence_test1(
input wire clk ,
input wire rst ,
input wire data ,
output reg flag
);
parameter S0=0,
S1=1,
S2=2,
S3=3,
S4=4,
S5=5;
reg [2:0] current_state;
reg [2:0] next_state;
always @(posedge clk or negedge rst)
begin
if(!rst)
begin
current_state<=0;
next_state<=0;
end
else
begin
current_state<=next_state;
end
end
always @(*)
begin
case(current_state)
S0:begin
next_state<=data==1?S1:S0;
end
S1:begin
next_state<=data==0?S2:S0;
end
S2:begin
next_state<=data==1?S3:S0;
end
S3:begin
next_state<=data==1?S4:S0;
end
S4:begin
next_state<=S0;
end
end
default:
nex_state<=S0;
endcase
end
always @(posedge clk or negedge rst)
begin
if(!rst)
begin
flag<=0;
end
else
begin
if(current_state==S4&&data==1)
flag<=1;
else
flag<=0;
end
end
endmodule
Moore型(摩尔型)状态图——输出只与现态有关
Moore型(摩尔型)状态机与米勒型稍有不同,下面我们尝试用摩尔状态机来解决这个问题
倘若在某个时钟上升沿时,当前current_state=S4时,此时若data=1,按照题目的要求,在这个上升沿结束之后flag就应该立刻拉高,而Moore型状态机的输出只与现态有关,在这个时刻current_state=S4,仅仅根据这个条件我们无法判断输出是0还是1,若将flag拉高了,但是data为0,那就是错误的,因此在当前时刻必须结合输入才能得出正确的输出,在下一个时钟上升沿,检测到current_state=S5时才能将flag拉高,这是才是正确的,因此Moore型状态机相比Mealy状态机会延迟一个周期。
代码如下
`timescale 1ns/1ns
module sequence_test1(
input wire clk ,
input wire rst ,
input wire data ,
output reg flag
);
parameter S0=0,
S1=1,
S2=2,
S3=3,
S4=4,
S5=5;
reg [2:0] current_state;
reg [2:0] next_state;
always @(posedge clk or negedge rst)
begin
if(!rst)
begin
current_state<=0;
next_state<=0;
end
else
begin
current_state<=next_state;
end
end
always @(*)
begin
case(current_state)
S0:begin
next_state<=data==1?S1:S0;
end
S1:begin
next_state<=data==0?S2:S0;
end
S2:begin
next_state<=data==1?S3:S0;
end
S3:begin
next_state<=data==1?S4:S0;
end
S4:begin
next_state<=data==1?S5:S0;
end
S5:begin
next_state<=S0;
end
default:
nex_state<=S0;
endcase
end
always @(posedge clk or negedge rst)
begin
if(!rst)
begin
flag<=0;
end
else
begin
if(current_state==S5) ,
flag<=1;
else
flag<=0;
end
end
endmodule
修改后的Moore型(摩尔型)状态机
我们可以通过将判断条件改为next_state==S5,这种方式将输出提前一个周期,因为next_state本就是根据current_state和data得出的,所以提前一个周期用也无妨。
`timescale 1ns/1ns
module sequence_test1(
input wire clk ,
input wire rst ,
input wire data ,
output reg flag
);
parameter S0=0,
S1=1,
S2=2,
S3=3,
S4=4,
S5=5;
reg [2:0] current_state;
reg [2:0] next_state;
always @(posedge clk or negedge rst)
begin
if(!rst)
begin
current_state<=0;
next_state<=0;
end
else
begin
current_state<=next_state;
end
end
always @(*)
begin
case(current_state)
S0:begin
next_state<=data==1?S1:S0;
end
S1:begin
next_state<=data==0?S2:S0;
end
S2:begin
next_state<=data==1?S3:S0;
end
S3:begin
next_state<=data==1?S4:S0;
end
S4:begin
next_state<=data==1?S5:S0;
end
S5:begin
next_state<=S0;
end
default:
nex_state<=S0;
endcase
end
always @(posedge clk or negedge rst)
begin
if(!rst)
begin
flag<=0;
end
else
begin
if(next_state==S5) ,
flag<=1;
else
flag<=0;
end
end
endmodule
这种方法相比于Mealy机多了一个状态S5